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1. Executive Summary 
 
Robots are truly an innovative technology and have the ability to perform tasks that 
humans could not to do alone. As the age of computer programming and electronic 
circuitry progresses, robots are becoming less limited to solve problems and create a 
better lifestyle. There is no doubt that without the aid of robots manufacturing would not 
be made possible, dangerous missions would not be carried out, and automation would 
not exist. Some would say that robots are faster and smarter than humans since 
computing can be processed at lightning speed. Although robots do not take on the full 
nature of a human being, they do require some parts to be able to act like a human. Most 
robots contain a brain for processing information and the use of sensors that act as eyes 
for interacting with the outside world. Robots would also contain arms and legs or wheels 
and motors to help them move around. Some robots are built for everyday use, some 
robots are used for fun, and there are also robots that can be used with Nerf-blasters. 
 
A human can be able to detect a field of interest and identify a target and shoot these 
targets with a nerf-blaster, but what if a robot could do the same thing yet faster and with 
more accuracy? This project is set out to use technology in order to create a robot that 
would be able to automatically find targets and fire upon them with the use of Nerf-
blasters. This will allow faster reaction time and accurate readings of targets all 
automatically. The robot will able to map out an area using sensors and cameras and 
would be trained on what targets to fire a nerf-blaster upon.  
 
This project documentation paper goes in detail with the motivation of the project, 
extensive component research, algorithm, and computer programming research. There 
is also research dedicated to the related standards on the market today that are compared 
to the different areas where this project would utilize these standards. There are sections 
devoted to strategic hardware and software design as well as physical chassis designs. 
Each section is labeled with the title and a brief description of the title and its subsections.  
 
This project is funded and overseen by Lockheed Martin with an overall $2,000 budget - 
$1,000 maximum for an as-demonstrated robot cost. This project is one of three robot 
projects each with a full engineering team consisting of computer science, electrical, 
mechanical, and computer engineering majors. All three robot projects will participate in 
a competition set out to battle against each team’s robot to find out which one would be 
the best in automatic detection and accurate firing mechanisms.  
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2. Project Description 
 
This chapter covers the motivation, objective and goals for this project. 
 

2.1. Motivation 
 
The motivation for this project to explore the possibilities of what it takes to make robot 
automation a reality. Also taking up the opportunity of managing among other engineering 
disciplines to get an idea what it takes to plan a project with several different departments. 
The challenge will be understanding how a system can map an area using sensors and 
create an image within the mapping. Since this type of project has not been approached 
before, it will be interesting to be able to utilize each person on the team and put their 
education to the test and to be able to practice research strategies as a team. 

 
2.2. Objective and Goals 
 
The objective for this project, amongst other things, is to build a robot that has capabilities 
to be manually navigated through wireless connection. The robot will also contain an 
automatic system that uses algorithms and sensors to automatically search and detect 
objects, such as targets. There must be a combination of two sensor modalities using 
examples such as mid-wave infrared imagery, LIDAR point clouds, visible spectrum 
imagery or radar returns. These targets will be fired upon automatically using Nerf-
blasters, darts, and balls. 
  
When the entire robot is completed, the goal for this project is to win a competition that 
will take place against two other robots with the same automated system. This 
competition has a set of rules and regulations to follow. All the requirements for this 
project can be found section 2.3, Requirements and Specifications. 
  
As for the competition, Figure 2.1 displays an example of the playing field. Two opposing 
robots will be placed in their respective zones, A and B, which will have dimensions of 
20ft x 20ft. There will be a 20ft x 10ft restricted zone with obstacles in the center of the 
field. In order to win the competition, the robot must be able to score the most amount of 
points. 
 
The point system is as follows: Three points for enemy bot impact with Nerf-ball. Four 
points for enemy bot impact with a nerf dart. One point for course target impact in opposite 
zone; choice of ammo can be ball or dart. Only a maximum of two hits per match is scored 
on stationary targets. Eight points is scored for impacts with enemy target robot medic. 
The robot medic takes on the responsibility of repairing the robot during the match and if 
the opposing robot can detect the medic, it is allowed to shoot at them. Only one robot 
repair is allowed per round. A deduction of five points will be in effect if the robot enters 
the restricted zone or moves out of bounds.  
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Figure 2.1: Example of the playing field 

 

2.3. Requirement Specifications  
 
This project has a set of requirement specifications to ensure that the robot is being built 
correctly and successfully. Lockheed Martin has set specifications to create a 
standardized robot for the competition and some members of the group conducted some 
specifications that are abstract, unambiguous and verifiable. The following sections note 
the requirement specification as well and the details on how to verify them. 
 

2.3.1. Size 
 
The first engineering specification is the size, seen in Table 2.1. Lockheed Martin set this 
standard so that the robot cannot be too large or inadequate to hold all the components 
of the robot. 
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Requirement ID Description  Verification 

S1 Total robot dimensions 
shall not exceed 3ft x 3ft x 
3ft.  

Standard to battlebot 
competition 

Table 2.1: Size Requirements 
 

2.3.2. Object Detection 
 
There are four engineering requirements in object detection, seen in Table 2.2. The 
requirements are specified by how far the target is, what kind of target and fire promptly 
on the appropriate targets. 
 

Requirement ID Description  Verification 

OD1 Be able to automatically 
detect objects to a distance 
up to 45ft. 

Standard to battlebot 
competition. 

OD2 To be able to automatically 
detect and highlight three 
different targets with a 51% 
accuracy rate. 

Standard to battlebot 
competition. 

OD3 Must be able to 
automatically determine 
the distance of three 
targets up to 50ft. 

Simulating various targets 
at different ranges. 

OD4 Be able to detect moving 
target with a movement 
speed range of 1 to 3 m/s. 

Utilizing a sample robot for 
target acquisition. 

Table 2.2: Object Detection Requirements 

 
2.3.3. Power 
 
There are two power requirements, seen in Table 2.3, to ensure the robot stays working 
and can supply enough power to the robot. The table below will identify the requirement 
number, give a brief description and list the way to verify. 
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Requirement ID Description  Verification 

P1 Power supply must be able 
to last a minimum of 25 
minutes. 

Using the system for two 
10 minute rounds. 

P2 To be able to operate at 
12V and draw a maximum 
of 3A. 

Based on total power 
consumption of the system 

Table 2.3: Power Requirements 
 

2.3.4. Mobility 
 
There are two requirements specifications on what kind of movement this robot will be 
allotted to have. These requirements are listed in Table 2.4. 
 

Requirement ID Description  Verification 

M1 Be able to remotely control 
the Battlebot. 

Testing with the use of a 
remote control in each 
direction the Battlebot must 
turn. 

M2 Be able to track the 
distance it travels. 

Measure the distance it 
moves. 

Table 2.4: Mobility Requirements 

2.3.5. Cost 
 
While there are several possibilities on building a robot, there is a budget and this robot 
cannot exceed the demonstrated cost of $1000. The cost requirements are seen in 
Table 2.5. 
 

Requirement ID Description  Verification 

C1 As demonstrated cost 
cannot exceed $1000. 

Optimizing components 
under $1000 for the final 
build. This is based on 
Lockheed Martin’s budget 
requirements. 

Table 2.5: Cost Requirements 
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2.4. House of Quality Analysis 
 
This section discusses a house of quality for this project. The house of quality is a diagram 
that shows how this project will be able meet consumer’s standards, but with some 
engineering tradeoffs.  Since there are tradeoffs between different requirements, it is 
important to understand them so that they can establish the meaning of the requirement 
as well as provide solutions to these trade-offs.  
 
The four marketing requirements that deem suitable for this project would be detection 
accuracy, firing accuracy, low power and cost. The six areas of quality tradeoffs are the 
range of detection, object recognition accuracy, fast processor, memory dimensions, and 
cost.  
 
In the table below each requirement contains a polarity. This polarity indicates positive 
and negative symbols which shows a desire of the requirement. An example would be 
that low power is a positive requirement since it is more desirable to the project while cost 
is a negative requirement since the project does not want a high cost.  
 
The arrows are for positive and negative correlation. The arrows in the upward direction 
indicate positive correlation in which both requirements can be improved together while 
the arrows in the downward direction are where the two requirements will contradict one 
another. An example would be having too high firing accuracy will result in more cost in 
technology which becomes a negative correlation to the requirements. 
 
Table 2.6 contains the marketing tradeoffs for this project with specific number values at 
the bottom of the table. The legend is for the reader to understand what each symbol in 
the table represents. All trade-offs are considered in order to prevent an imbalance within 
the system and are mapped in Table 2.6. Ideally, considering all positives and negatives 
will lead to a complete build that will satisfy all requirements listed above in section 2.3 
Requirement Specifications. 
 
Legend 
↑       Positive Correlation 
↑↑     Strong Positive Correlation 
↓       Negative Correlation 
↓↓     Strong Negative Correlation 
+       Positive Polarity (Increasing requirement) 
-        Negative Polarity (Decreasing requirement) 
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 Range of 
Detection 

Object 
Recognition 
Accuracy  

Fast 
Processor 
(Clock  
Speed) 

Memory Dimensions Cost 

+ + + + + - 

Detection 
Accuracy 

+ ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ ↓ 

Firing 
Accuracy 

+ ↑ ↑ ↑↑ ↑↑ ↑↑ ↓ 

Low Power +   ↓ ↓ ↓ ↑↑ 

Cost - ↓↓ ↓ ↓↓ ↑  ↑↑ 

  ≈45ft ≈51% ≥1GHz ≥512MB 3 x 3 x 3 ft ≤$1000 

 Table 2.6: Engineering-Market Trade-Off Matrix 
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3. Research 
 
Section 3, Research, contains extensive study among similar projects as well as 
component comparisons in order to produce the robot for this project. It is broken down 
into different subsections addressing the areas of needs to make this project work.  

 
3.1. Similar Projects 
 
This section displays similar projects that have been found and assembled as research 
for the current system discussed in this paper. These projects showcase a self-targeting 
autonomous turret system, an autonomous sentry robot, and an autonomous chasing 
robot. All of these projects are past projects completed at the University of Central Florida. 
The projects are explained in further detail within this section including brief descriptions, 
components researched, and software approaches for development each project. 
 
The first project, the self-targeting autonomous turret system (STATS), is very similar to 
the current proposed system. STATS was developed by UCF students Elso Caponi, 
Michale Lakus, Ali Marar, and Jonathan Thomas. STATS uses software in order to 
successfully attack moving targets. STATS is a camera based weapon system; therefore, 
it uses the camera sensor in order to detect, aim and fire. Targets were named to be 
hostile or friendly with by different coloring or different radio frequency indications, RFID. 
 
The weapon of choice for STATS was an automatic airsoft gun. On the gun, a warning 
siren was implemented to signal possible incoming threats. The gun was able to move in 
both the X and Y plane via two servo motors. Individuals involved with STATS chose to 
have the turret controlled by a tablet. Students chose to have the tablet connect wirelessly 
to the turret. A live video feed was also sent to the tablet from the turret. Wi-fi modules 
were necessary in order to successfully send over this video feed. 
 
Components used in implantation of STATS include a microprocessor, two servo motors, 
a camera, a PCB, a tablet, power supply, a microcontroller, a laser device, alarms and an 
airsoft gun. Most of these components have already been explained above. However, 
further detail will be described regarding some of these components. A laser device was 
implemented with the guns in order to accurately point and shoot at targets reading in 
data from a distance. The system was powered with both internal batteries as well as AC-
DC electricity. 
 
STATS team implemented concepts based off computer vision in their software build. The 
idea that the STATS team used involves algorithms that are used to determine the 
distance pixels have moved in between frames. These algorithms are initiated as the 
tracking method begins. Using all the different pixel locations, estimations on the targets 
next position is calculated. By estimating a target’s next location, the STATS team was 
able to fire accordingly taking into account the time it takes between a shot fired and the 
shot actually hitting the target. 
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Another similar project to the robot of the proposed system is the autonomous sentry 
robot. The autonomous sentry robot was developed by UCF students Brian Dodge, 
Nicholas Musco, and Trevor Roman.This robot has many similarities to that of STATS 
and the proposed system. There is heavy research within this project on the capabilities 
of SLAM as well as sensor research that includes Lidar, Kinect, and a standard webcam. 
 
The purpose of this autonomous sentry robot is for security in enclosed buildings. More 
than one sensor is used in this project as well in order to navigate autonomously and build 
a map of the surrounding area effectively. Sensor data is processed by either a 
microprocessor or a laptop. Once the robot has built an efficient map of an area, the robot 
is able to detect if any changes occur to the original mapping. If so, the owner can be 
alerted through a mobile application of the change in environment. The owner can 
navigate the robot using the mobile application and will receive a live video feed straight 
to their smartphone. 
 
The sentry robot’s design allows it to navigate fully autonomously. Only when the owner 
chooses to use the mobile application for navigation will the robot stop navigating on its 
own. The robot will even go back to its charging station when necessary in order to 
“refuel”. Objects that are unable to be viewed or seen by the camera was taken into 
account through development of this project. Many requirements such as low power, low 
maintenance, ease of use, and low latency were described accordingly in this project. 
 
The hardware design resembles that of STATS and of the proposed system. The 
electrical components consist of a battery, charger, charging station, sensors, and a 
microcontroller. For software design, more information is given on SLAM and how it is 
proposed to work with autonomous navigation in their system. A logical breakdown for 
every autonomous feature is broken down and explained accordingly for further 
reference. 
 
The last project that shows similarities to the proposed system is the autonomous chasing 
robot. The autonomous chasing robot was developed by UCF students Bryan Diaz, Victor 
Hernandez Salomon, Khanh Le, and Luis Sosa. The robot was designed to be able to 
follow any object in motion. As the robot detects an object in motion, it will prepare to get 
close as fast as possible to said object. Instead of pointing directly at a target, the robot 
was designed to be able to follow the same path of an object in motion. 
 
Sensors as well as image processing are two main features to the functionality of this 
robot. A big factor that needed to be considered in their project implementation was the 
acceleration and deceleration of the robot depending on the position of the object in 
motion. The system also calls for an android application as a means of controlling the 
robot manually if preferred. One idea of implementation for this robot in an everyday 
setting was its use with police officers. Their idea was to have a police officer able to 
navigate the robot via their smartphone. If an item is defined as a “blacklist” item, in this 
case in terms of a license plate, it will pick up on these numbers and inform the officer 
accordingly. 
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All of these projects demand focus in the area of computer vision. The software 
implementation is one of the main features of success in every autonomous system. 
Hardware designs for all projects have many similarities while building an autonomous 
system within similar price ranges. Even though the proposed system will be used to fire 
at another battlebot in motion, the characteristics of each project remain the same with 
different objectives. 
 

3.2. Field Mapping/Localization 
 
Field Mapping and Localization may assist in the autonomous detecting, aiming, and firing 
of the proposed system. 
 

3.2.1. SLAM 
 
In order to satisfy the requirements of this project that the robot must have autonomous 
detecting, aiming, and firing, various algorithms were researched. One concept, SLAM, 
was chosen as a top contender for this project. In the following paragraphs, an 
introduction, history, consideration before implementation, explanation, and ideas of 
SLAM or SLAMMOT implementation will be illustrated. Finally, some robotic projects with 
implementation of both SLAM and SLAMMOT will be discussed to show possibilities that 
each should offer. 
  
SLAM, which stands for Simultaneous Localization and Mapping, is a process that can 
be used to create a map of an environment and compute a current location on this map. 
SLAM consists of a wide range of algorithms that come together in order to solve the 
problem.  
 
The idea is to be able to place a robot in any unidentified environment and allow the robot 
to build and constantly improve upon a map of its surroundings. The robot will then be 
able to navigate within its environment knowing its exact location which is shown on the 
map. SLAM has heavily impacted robot designs as it has the capability of creating 
autonomous robot systems. SLAM has been implemented in various different robots, 
ranging from a standard indoor robot to some robots that can navigate effectively 
underwater. An example of a SLAM map has been provided below in Figure 3.2. 
  
SLAM was originally developed by Hugh Durrant-Whyte and John J. Leonard. Durrant-
Whyte and Leonard aimed to solve the constant conceptual and computational mapping 
problem that was found within robotics. A crucial point that Durrant-Whyte and Leonard 
were trying to prove was that there is a connection between estimates of different 
landmark locations in a map. Once landmark correlation was focused on and the mapping 
and localization problem was looked upon as convergent, the SLAM problem was 
established. As more research and development came into play, individuals began using 
SLAM efficiently within various projects. 
  
The SLAM concept consists of various parts; these parts include data association, state 
estimation, state update, landmark extraction, and landmark update. Some of these 
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concepts, such as data association, will be explained in further detail within this 
document.  
 
Before considering SLAM algorithms, it is important to note the different variables that 
must be considered for development. This includes the range detector or vision sensor 
as well as robot capabilities and specifications. Odometry performance must also be 
considered, which measures how accurately the robot can determine its location based 
on wheel rotation. An encoder can be used in order to capture the robot’s location based 
on wheel rotation within this project. A robot cannot have more than a 2 cm per meter 
moved error as well as a 2 degree per 45 degree turned error. 
  
Depending on whether a vision sensor or a rangefinder is implemented in order to develop 
a map of the robot’s surroundings, various possibilities must be considered. Since two 
sensor modalities must be utilized in order to successfully detect, aim, and fire at targets, 
either sensor can be used in correspondence to the SLAM process while the other sensor 
may be used for more information in order to achieve further accuracy. 
 
A rangefinder can provide little computation, efficiency, and precision. However, prices in 
regards to capabilities of each rangefinder must be considered. A vision sensor can 
provide more information than a rangefinder, but requires more computation. Also, 
changes in light may also affect the vision sensor. Since brightness conditions for the 
robot’s environment have not been divulged for this project, the possibility of error using 
a vision sensor must be extensively considered. 
  
Assuming the robot uses the LIDAR Lite v3 Laser Rangefinder (discussed in section 
3.3.1.1) to implement the SLAM process, the position gathered by the encoder will be 
corrected by the information collected from the laser. In order to accomplish this feat, 
characteristics of the environment, often referred to as landmarks, must be extracted and 
reexamined when the robot is in motion. An EKF, Extended Kalman Filter, is responsible 
for updating a robots’ position based on these landmarks. A simple outline regarding how 
the SLAM process works in accordance with the laser scan, landmark extraction, data 
association, and EKF is shown in Figure 3.1 below. 
 



 

12 
 

 
Figure 3.1: Outline of the SLAM Process 

(Request Pending by SLAM for Dummies) 
  
As the rangefinder and the encoder work in accordance with one another in order to find 
out the exact position of the robot, timing of both data enquiries must be considered. The 
laser data may become outdated if odometry data is achieved too late. Extrapolation of 
the odometry data, estimations of what the data will be, are used in the SLAM process to 
avoid this error of incorrect data timing. 
  
Establishing which landmarks will be found by the robot in this project requires more 
research. Points to consider regarding landmarks includes being re-observable, 
distinguishable, plentiful, and stationary. For this project, using a rangefinder to detect 
boundaries will be very difficult, since boundaries were described as marked but not 
necessarily 3D. For instance, the boundary might be tape or another flat 2D object, which 
will give the rangefinder nothing to detect. 
  
If boundaries are needed in order to effectively detect, aim, and fire, a vision sensor 
should be considered for project implementation. However, a rangefinder will be able to 
successfully pick up on stationary targets as well as the stationary obstacles placed within 
the field. Discounting objects in motion as landmarks, such as the robot or medic, is highly 
important to note, since the main target will always be in motion. 
  
One algorithm that can be used regarding SLAM is the RANSAC algorithm. RANSAC, 
Random Sampling Consensus, may be used to extract lines from a rangefinder. Once the 
rangefinder scans multiple times, these reading are then compiled into a best fit line. The 
algorithm then checks how many readings are actually close to the best fit line. Taking 
into account a certain threshold, one can successfully assume whether a landmark has 
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been found accordingly. This threshold is called the consensus within the RANSAC 
algorithm. 
  
Some things must be taken into consideration regarding the RANSAC algorithm; these 
include the amount of times the programmer would like to attempt to find lines, the amount 
of lines the programmer would like to use in order to create the best fit line, how many 
degrees to take into account for each reading, the maximum distance the reading will be 
able to go, and the number of points on each line for it to be considered. Without taking 
into account these scenarios, the RANSAC algorithm may result in failure. 
  
Another algorithm that is used often in SLAM with RANSAC is the Spike algorithm. 
Extrema is used in the Spike algorithm in order to successfully locate landmarks. One 
must be cautious of the Spike algorithm, since it has a chance to fail in smooth 
environments. The algorithm itself relies on landscape change between two laser beams. 
This algorithm is great for finding things that lie in front of a wall; objects that are static, 
but are not actually the barrier of the room. In this case, the obstacles and static targets 
may be considered as “spikes’ within SLAM. A more intricate example of these spikes as 
well as the edges drawn on a SLAM map can be seen below in Figure 3.2 Figure 3.2 
illustrates just one of the many possibilities that SLAM has to offer in terms of accurate 
mapping. 
 

 
Figure 3.2: Intricate SLAM Map showing spikes and edges 

(Request Pending by SLAM for Dummies) 
 

3.2.2. SLAMMOT 
 
If SLAM proves to be incapable of delivering the specified requirements due to the lack 
of being able to track moving targets, an alternative solution must be considered. Building 
onto SLAM in order to successfully track moving targets, SLAMMOT may be able to fill 
this role. SLAMMOT, Simultaneous Localization, Mapping and Moving Object Tracking, 
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is very similar to SLAM, but encompasses moving object tracking, which will be necessary 
if the medic or robot will be marked on the map. It encompasses SLAM as described 
above with stationary objects and SLAM with detection and tracking of moving objects 
(DATMO). SLAM alone may perform poorly since the assumption of only static objects 
will be violated. 
 
SLAMMOT may be used with either a vision sensor or a rangefinder, similar to that of 
SLAM. If a camera is used with SLAMMOT, appearance based approaches are widely 
used to detect moving objects. Either monocular SLAMMOT or stereo based SLAMMOT 
can be considered. However, if a laser scanner is used, feature based approaches can 
be used to detect moving objects alternatively. Opposite of SLAM, a camera may actually 
be more beneficial with the use of SLAMMOT, since objects in motion may be easier to 
track as opposed to using a laser scanner. 
 
Assuming monocular SLAMMOT is used in this project in order to build a map of the 
environment as well as successfully track moving targets, data association can be 
achieved using either 2D image matching or 3D estimates of the filter. New features or 
landmarks are still put under the stationary hypothesis that would be used with local 
SLAM.  
 
Using SLAM, up to 30 static features can be seen at at time and the map will update after 
20 EKF updates. When a new landmark is found, two monocular SLAM would be 
initialized under two hypotheses. One is SLAM without adding a new landmark and one 
is SLAM assuming the landmark is stationary. Using both the negative inverse depth 
based method and the binary Bays filter-based method will be that basis of SLAMMOT. 
 
Many projects that have been found using SLAM involve autonomous vehicles that can 
navigate an area. Outdoor projects and airborne projects have also used SLAM to 
properly navigate. One project found using SLAMMOT describes trying to incorporate 
SLAMMOT on a large scale in urban areas to lead towards fully autonomous vehicles in 
a human interactive environment. SLAMMOT has been attempted in different projects 
using either a monocular camera or a stereo camera. It has been found that it is possible 
to use SLAMMOT with a range sensor alone, however, data may be harder to track with 
objects in motion.  
 

3.3. Sensors 
 
As per project requirements, two sensor modalities were needed. Below is information 
on the sensors that were discussed. 
 

3.3.1. Range Finders 
 
While computer vision algorithms can be used to detect objects based off images, 
whether a picture or a frame from a video, they typically do not provide information on 
how far the object is from the source of vision. This type of information, target distance 
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(the distance of an object from a source point), is typically done by what is known as a 
rangefinder. 
 
It is necessary to determine how far a target is from the robot so that the robot can make 
a decision on whether or not it should fire at the target and how it should fire (i.e. is the 
target in bounds of the course, is it in the enemy zone, do the guns need to accommodate 
for distance by arcing, etc.). Therefore, one of the two sensor mechanisms of the battlebot 
system should be able to acquire the distance from the vision sensor.  
 
Several range finders exist, but many are simply out of the budget or do not meet at least 
a 20 foot range of detection. Most of the range finders in the robotics market that are 
within the budget are made of laser or ultrasonic systems.  
 
While researching range finders, of any kind, the first thing that was observed before 
progressing through any other specifications was the maximum range the sensor could 
reach. For the purposes of this robots targeting system, an ideal max detection range 
would be at least 40 feet in order to span the course from front to back. If the sensor 
specified that it could not detect an object at more than 40 feet the research of that sensor 
was immediately tossed. 
 

3.3.1.1. Laser 
 
Laser range finders are quite expensive, but their advantages warrant the cost. The laser 
range finders reach farther distances for target detection and are able to provide distance 
information at a more frequent and faster rate. This will allow the the robot to update the 
changes in position of an enemy target more rapidly and reduce delay with the firing 
mechanism. As an added bonus, some laser sensors provide a laser guide that may be 
beneficial for testing purposes. For example, the laser guide could be used to calibrate 
targeting so that the rangefinder is pointing at what it needs to be pointing to.  
 
Some minor disadvantages of a laser range finder are its inability to detect the range of 
transparent objects as the laser will go right through the material. Another possibility is 
loss of the laser on the return trip by interference from other forms of light such as the sun 
when outdoors or by windows. However, both of these disadvantages are believed to be 
non-issues for this project as the field will be in an indoors environment and enemy targets 
are presumed to be non-transparent.   
 
With a limited as demonstrated budget for the nerf battlebot system, it was only logical to 
search for a product that met the basic needs of range detection for a distance of about 
40 feet and did not over do the job. Unfortunately, there are currently only a handful of 
laser range finder models on the market that met both budget and performance demands. 
The laser range finders found and researched are listed and compared in Table 3.1.     
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Name Price 
($USD) 

Max Range Accuracy Size 

TeraRanger Duo ToF 
Rangefinder with Sonar 
Sensor 

$207.20 45.93 ft +/- 2 cm 5.3 x 4.4 x 2.5 cm 

LIDAR-Lite 3 Laser 
Rangefinder 

$149.99 131.23 ft +/- 2.5 cm 2 ✕ 4.8 x 4 cm  

LeddarTech Leddar 
One Optical 
Rangefinder 

$115.00 49.21 ft +/- 5 cm 2” Diameter 

Table 3.1: Comparison of laser range finders 
 

Any three of these range finders listed in Table 3.1 appear to adequately do job solely 
based on the specifications listed, but the question is price versus performance. Is the 
slight increase in performance worth the moderate increase in cost considering the 
budget is very limited? 
 
The specifications for the LIDAR-Lite 3 are very appealing in comparison to the 
TeraRanger Duo and LeddarTech Leddar One rangefinders. This is because its max 
range is almost triple that of the others and it is twice the accuracy of the LeddarTech 
One and only 0.5 cm less accurate than the more expensive TeraRanger Duo. As for 
size, it is much larger than the LeddarTech Leddar One, but slightly smaller, by volume, 
than the TeraRanger Duo. The TeraRanger Duo does offer a second form of range finding 
- a sonar sensor - but it is unlikely that both the laser and sonar functionality will be used 
in conjunction with each other or that the sonar will be used over the laser sensor. 
 
A 0.5 cm difference in accuracy (LIDAR-Lite 3 versus the TeraRanger Duo) can make a 
world of difference however. These evaluations must be justified after reviewing other 
electrical components and also the mechanical construction aspect of the robot to see 
where there is any freedom in budget. At any rate, it is of best interest to invest a good 
portion of the budget on the automated detecting and firing system of the robot as that is 
a fundamental function.    
 

3.3.1.2. Ultrasonic 
 
While there are a plethora of ultrasonic sensors available on the market, almost all of 
them fail to reach a max range detection distance of over 20 feet (even with the higher 
end and more expensive models). 
 
Additionally, ultrasonic sensors have other drawbacks than not having long distance 
range detection. During the transmission of an ultrasonic sound, sound interference is 
possible, whether that be absorption of the sound into low density materials or a similar 
sound being produced by another source resulting in a false reading. This is a cause for 
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concern, because it is unknown if anything in the building hosting the playing field will 
create a sound emission that will confuse the sensor or if an obstacle is made up of low 
density material such as low density foam. 
 
This combination of difficulties meant that ultrasonic sensors were out of the question for 
this project. These type of budget sensors are not designed for long distance range 
detection and are not very reliable for autonomous firing systems. 

 
3.3.2. Camera and Vision Sensors 
 
It is no secret that the camera plays an important role in the overall success of this project. 
Its job is to provide the processing unit with a stream of images that will be analyzed to 
detect, track, and aim at the targets. This is an enormous responsibility, and thus we had 
to study the impact of many of their features on our design and understand the tradeoffs 
at play. When considering cameras, the things that mattered most were the resolution 
range, frame rate, angle-of-view, cost, and compatibility with the other hardware and 
software in our system. 
  
Resolution is instrumental to the accuracy of our system. The higher it is the more detail 
we have to determine if an object is a target. It makes clear sense to maximize this, but 
we also have to keep in mind that the higher the resolution, the larger the processing 
overhead would be. The group agreed that a High Definition resolution of 720p (1280 x 
720) would suffice, but we searched for options with higher resolutions, that could be 
downgraded if proved to be too much.   
  
Frame rate was very important since our system needs to work in real time. Any latency 
between receiving frames and their processing could be the difference between hitting 
and missing the target. Thus the group decided that a frame rate of around 30 frames per 
second would be needed. 
  
Angle-of-view is also important since our strategy involves having as much of the playing 
field in view as possible. The bigger the angle-of-view, the more of the physical scene we 
capture at a given distance.  
 
The Raspberry Pi Camera Module v2, Pixy CMUcam5, and the Logitech C920 are among 
the most popular choices today in robotics projects and would be well suited for ours. The 
comparison of these vision sensors are seen below in Table 3.2. 
 

3.3.2.1. Raspberry Pi Camera Module v2 
 
The Raspberry Pi Camera Module v2 is a great option for our system. First, because it is 
a high-definition camera, capturing a picture at resolutions up to 3240 x 2464 at 15 frames 
per second. 15 frames per second is less than we require, but the resolution can be 
lowered to achieve higher frame rates. For example, it can record a resolution of 1080p 
at 30 frames per second, and it can do 720p at 60 frames per second. Also it has a decent 
angle-of-view of 62.2 degrees horizontal x 48.8 degrees vertical. A huge plus for this 
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camera is that it is supported by a large community of Raspberry Pi users, which will be 
handy if we encounter any trouble interfacing with it. Although it is compatible with all 
Raspberry Pi models, it cannot interface with many other boards directly since it uses CSI 
(Camera Serial Interface) as its output, a specialized interface for the Raspberry Pi. 
Therefore, making this camera a great choice only if we have a Pi to pair it with.  
  

3.3.2.2. Pixy CMUcam5 Image Sensor 
 
Another camera that we have looked at is the Pixy CMUcam5 Image Sensor. It has a 
native image resolution of 1280x800 and records this at 25 frames per second. It has the 
largest angle-of-view of the cameras we considered, getting 75 degrees horizontally and 
47 degrees vertically. It is highly compatible with microcontrollers, as it has data outputs 
of UART serial, SPI, I2C, USB, digital, and analog. What makes the Pixy unique is that it 
has its own processor and it is pre-programmed to do object detection. By the push of a 
button, it can learn to detect objects of a certain color signature, and shape. Another plus 
for the Pixy is that it is compatible with programming languages C, C++, and Python.  
  

3.3.2.3. Logitech HD Pro Webcam C920 
 
The Logitech HD Pro Webcam C920 is another great option we found. It has been a 
popular choice in vision projects, and it is easy to see why. It records in full high-definition 
1080p, at 30 frames per second. It has a large diagonal angle-of-view of 78 degrees, 
which at an aspect-ratio of 16:9 translates to 70.42 degrees horizontal and 43.30 degrees 
vertical. It is a universal plug-and-play device which connects via USB 2.0. Another 
advantage of using this camera is it has H.264 video coding. By accessing this format of 
video stream the video quality will remain high, but compressed to low bit rates for quicker 
transmission.  
  

Make Angle of 
View 

Resolution Frame Rate Price 
($USD) 

Raspberry Pi Camera 
Module v2 

62 x 48 3240 x 2464 15 $25 

Pixy CMUcam5 Image 
Sensor 

75 x 47 1280 x 800 25 $68 

Logitech HD Pro Webcam 
C920 

70 x 43 1920 x 1080 30 $58 

 Table 3.2: Comparison of vision sensors 
 
 

3.3.3. Thermal Camera 
 
The main target we seek to detect in the battles will be our opponents robots. One of the 
reasons why it will be a difficult task to do this is that there will be other objects on the 
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course to distinguish them from. A key difference between the robots and those other 
objects though are that they will be composed of electrical devices. These electrical 
devices will radiate infrared light or produce thermal energy that would otherwise go 
undetected by the human eye or any visible light camera. Infrared or thermal imaging 
camera sensors could make use of this detail and provide an advantage to the detection 
algorithm.  
 
The problem with using thermal cameras in our design are that there are few options 
available to us due to their expensive cost. The thermal cameras that we could afford are 
compared in Table 3.3. 
 

Sensor  FLiR Dev Kit  Seek Compact 

Resolution 80 x 60 206 x 156 

Field of View 51 ° (Horizontal); 63.5 ° 
(Diagonal) 

36 ° (Horizontal) 

Wavelength Band 8 to 14 microns 7.5 to 14 microns 

Temperature Range -4°F to 248°F 40° F to 626° F 

Connectivity I2C (SPI) Micro USB 

Platform 
Compatibility 

Raspberry Pi, Arduino, ARM Android 

Price $259.95 $250 

 Table 3.3: Comparison between FliR Dev Kit and Seek Compact thermal sensors 
 

After analyzing the specifications, there were different tradeoffs we would make in 
selecting one the similarly priced thermal sensors. The Seek Compact offers a higher 
resolution than the FLiR, but at a smaller field of view. A higher resolution would give the 
software more pixels to detect an object, which would be crucial at longer distances. A 
wide field of view would be preferable since our idea is to align the thermal sensor with 
the view of our visible-light camera. The temperature range of the Seek Compact is larger 
than the FLiR’s, but its floor detection temperature of 40° F could be too high to be useful. 
A disadvantage of the Seek Compact is that it's built to operate on the Android operating 
system which would limit our platform choices.  
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3.3.4. Encoder 
 
A dilemma in having a specified course size and designated zone is preventing the robot 
from overstepping its boundary. Constantly capturing where the robot’s position is within 
its boundary can be used to prevent user fault (e.g. the user remote controlling the robot 
goes in the wrong direction and leaves its zone resulting in a deduction of points). 
Limitations could be set to lock a motion that would cause the robot to leave its zone if it 
is at close quarters with the border. 
 
One idea of keeping tracking of the robot’s relative position on the field was to check when 
the remote control was active and using trial and error to approximate how far the robot 
has traveled in relevance to the direction the user has input and the size of the 
circumference of the wheels. This would take a great deal of time and most likely end with 
very inaccurate results.  
 
But as it turns out, technology already exists to simplify this method of tracking - encoders.  
 
An encoder is a sensor that can be attached to the wheels of the robot to track the rotation 
of the wheels. It converts an electronic signal into a digital signal that can then be sent 
back to software algorithms to maintain a relative position of the robot on the course. 
Given the size of the wheels it is possible to determine how far the robot has traveled and 
even how fast it is going. 
 
There are several different types of encoder systems, all with varying amounts of 
accuracy and pricing.  
 
For project cost savings, in order to stay within our budget limitations, it was recognized 
that there exists package deals of gear motors that each include encoders. A majority of 
the gear motors on the market tended to robotics include encoders that use the hall effect; 
rotational changes are tracked by a change in voltage invoked by a change in magnetic 
field by the magnets attached in the encoder system. 
 
While these budget encoders are not very accurate for robotic systems that rotate 
constantly at high speeds (e.g. an autonomous label attaching system for bottles of soda), 
it is estimated that they will work fine for the purposes of an autonomous robot constrained 
to roughly a 300 square foot course zone. This is because it is predicted that the robot 
will not be moving all that much to reduce strain on the firing mechanism and processing 
unit. The more the robot moves the more inaccurate the tracking system could become. 
If rotational precision accuracy is off by even a millimeter than the more the wheel rotates 
the more inaccurate data adds up. To clarify, if one millimeter of distance is lost per 
rotation than after 150 wheel rotations it is entirely possible to have lost about half a foot 
of distance in positioning data.  
 
As long as manual remote controlled movement of the robot is limited, low-budget 
encoders will suffice for the recording of its position relative to its restricted zone 
boundaries. 
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3.4. Microcontrollers 
 
The microcontroller will be used to connect the electrical subsystems together. It will read 
from the sensors and send their data to the main computer for processing. As targets are 
detected, the main computer will supply the microcontroller with their coordinates. These 
coordinates will be translated into the movements of the stepper motors to aim the 
weapons, or the servo motor to keep the tracked object in the view of the camera. It will 
also be in charge of controlling the gear motors that will drive the robot.  
 
Due to the immense popularity and support available for the Arduino boards, we have 
focused our search on microcontrollers available with this platform. A list of potential 
microcontrollers can be seen in below Table 3.4. This will provide us with a lot of 
resources and software libraries to speed up our development. 
  
Arduino Software is the integrated development environment provided by Arduino that we 
will use to program the microcontroller. It runs on the most popular operating systems 
such as Microsoft Windows, Mac OSX, and Linux. It is based on the Processing 
programming language which builds on Java, but it also supports the languages C and 
C++. This was important to us as the group is familiar with them, and have experience 
programming embedded systems. 
 

Development 
Board 

Arduino Due Arduino MEGA 
2560 

Arduino UNO 

Microcontroller AT91SAM3X8E ATmega2560 ATmega328P 

Architecture 32-bit ARM 8-bit AVR 8-bit AVR 

Clock Frequency 84 MHz 16 MHz 16 MHz 

Max Operating 
Voltage 

3.3 5 5 

Flash Memory 512 KB 256 KB 32 KB 

SRAM 96 KB 8 KB 2 KB 

GPIO pin count 54 54 14 

Price $40.99 $36.99 $22.39 

Table 3.4: Comparison of microcontrollers 

 
Arduino Due is the most powerful microcontroller of the three. It has the fastest clock, 
most flash memory, most SRAM, and GPIO pins. It can dish out more power than other 
two microcontrollers as well. It can output both 3.3V and 5V at 800mA. The Arduino 
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MEGA 2560 and the Arduino Uno cannot match this. All the Arduinos come preloaded 
with bootloaders that makes them ready to download new code.  
 
One important detail that cannot be seen in the specifications of the microcontrollers are 
their popularity. The Arduino Uno is the most widely used Arduino, and therefore there 
are the most documented.  
 

3.5. Microprocessors 
 
The main objective of our robot is to autonomously detect targets. The team plans on 
accomplishing this by applying several computer vision techniques such as object 
detection, facial recognition, and motion tracking, which are known to be computationally 
expensive. Even a system dedicated to solving one of those tasks, requires a high amount 
of power to perform.  
  
From researching similar projects, we realized we would need a device more powerful 
than a microcontroller to do this amount of processing. In fact, the most common setups 
of these systems were on desktop computers with multi-core processors, Gigabytes of 
RAM, with 64-bit Operating Systems. These kinds of conditions are needed because 
these algorithms are fighting to work in real-time. The computer we chose would need to 
be of a similar mold as those desktops. 
  
In order for it to be useful, to us it would also need to run an operating system compatible 
with OpenCV to call the vision algorithms. That leaves us with machines that either run 
Linux, Windows, or Macintosh. Since we are looking for single-board computers we are 
mostly left with a system running on Linux.  
  
The power requirements of the machine are also relevant. Each battle will last about 10 
minutes, and many components will be drawing power from the battery. Most of the 
single-board computers we found ran on 5V and 2A.  
  
Below, in Tables 3.5-3.8, are the different options we found: 
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Name Banana Pi Pro Computer Board BPI-M1 

Price $37.50 

OS Raspbian, Android, ArchLinux 

CPU ARM cortex-A7 dual-core CPU @ 1.0GHz 

GPU ARM Mali400MP2 

RAM SDRAM: 1GB DDR3 (shared with GPU) 

Storage 4GB 8-bit eMMC on-board flash storage 

USB 2 x USB 2.0 ports 

Power 5V, 2A  

Size Size: (L x W x H): 92.00mm x 60.00mm x 0.00 mm 

Weight 48g 

Table 3.5: Banana Pi Pro specifications 
 

Name ODROID-C2 

Price $40 

OS Ubuntu, Android, ARCHLinux, Debian 

CPU Amlogic ARM® Cortex®-A53(ARMv8) 1.5Ghz Quad Core CPU 

GPU Mali™-450 GPU (3 Pixel-processors + 2 Vertex shader processors) 

RAM 2Gbyte DDR3 SDRAM 

Storage eMMC5.0 HS400 Flash Storage slot, UHS-1 SDR50 MicroSD Card slot 

USB 4 x USB 2.0 ports 

Power 5V, 2A 

Size 85 x 56 mm (3.35 x 2.2 inch) 

 Table 3.6: ODROID-C2 specifications 
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Name Raspberry Pi 3 Model B 

Price $39.95 

OS Raspbian 

CPU Broadcom BCM2837 64Bit ARM Cortex-A53 Quad Core 1.2GHz 

GPU Broadcom VideoCore IV 

RAM 1GB LPDDR2 (900 MHz) 

Storage MicroSD 

USB 4x USB 2.0 Ports 

Power 2.5A @ 5V 

Size 85.60 mm × 56.5 mm (3.370 in × 2.224 in) 

Weight 45g 

Table 3.7: Raspberry Pi 3 Model B specifications 
 

Name NVIDIA Jetson TK1 Development Kit 

Price $192.99 

OS Linux for Tegra 

CPU NVIDIA 4-Plus-1 Quad Core ARM Cortex A15 @ 2.3GHz 

GPU NVIDIA Kepler GPU with 192 CUDA cores 

RAM 2GB 64bit 

Storage 16GB 4.51 eMMC 

USB 1 x USB 3.0 port, 1 x USB 2.0 micro-ab socket 

Power 4.8A @ 12V 

Size 133mm x 133mm x 30mm (5.2in x 5.2in x 1.18in) 

Weight 120g 

 Table 3.8: NVIDIA Jetson TK1 specifications 
 
After collecting a group of options at single-board computer we were able to compare 
them over a few metrics. Computational power was a top priority for our robot so we 
started there. In terms of CPU clock speed, the boards were very competitive. The Nvidia 
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Jetson TK1 had the fastest CPU by a wide margin, with its Nvidia ARM Cortex A15 quad-
core clocking in at 2.3GHz. The next best CPU was found on the ODROID C2 with its 
ARM Cortex A53 quad core running at a solid 1.5GHz. The Raspberry Pi 3 and Banana 
Pi CPU’s were slightly slower.  The NVIDIA Jetson also provided additional computational 
power with its GPU containing 192 CUDA cores. Our system could absolutely be 
benefitted by this type of GPU as there are OpenCV libraries optimized for CUDA. Both 
the Odroid C2 and the Nvidia Jetson had the most RAM, with 2GB of it on each.  
 
After examining the options based on their hardware specifications we looked to gain 
more insights to their performances. Here we will show difference benchmarks we found 
performed by Michael Larabel, the founder of a company named Photonix Media, which 
analyzes and tests the performance of Linux hardware. 
 
The C-Ray v1.1 and Smallpt V1.0 are good tests to predict image processing speeds 
because they respectively test floating point calculation and image rendering. The results 
of the test are seen in Figure 3.3 and Figure 3.5. The Raspberry Pi 3 beat out its entire 
competition in both test, except for the Nvidia Jetsons. John The Ripper v1.8.0, Figure 
3.4, is a password cracking test, and the Raspberry Pi 3 beat out all its competition minus 
the Jetson TX1. Then the last figure, Figure 3.6, a general performance per dollar metric 
which showed the Raspberry Pi 3 beating out all the competition.  
 

 
Figure 3.3: C-Ray Benchmark 

(Permission Granted by Photonix) 
  
 
 
 
 
 
 

 

 
Figure 3.5: Smallpt v1.0 Benchmark 
(Permission Granted by Photonix) 
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Figure 3.4: John The Ripper Benchmark 

(Permission Granted by Photonix) 

 
Figure 3.6: Performance Per Dollar 
(Permission Granted by Photonix) 

  

3.6. Memory 
 
Images, when converted into a readable format by memory (bits and bytes), take up a 
large amount of memory, or RAM (Random-access memory). The problem is that there 
are a lot of different image resolutions (640x480, 1280x720, etc.) and image formats 
available (JPEG, PNG, TIFF, RAW, etc.) and each resolution and format varies in the 
amount of data they take up. There are a number of different combinations to use and it 
is unknown at this time which settings will be applied.  
 
Take, for example, an image that is 128x128 pixels. A general rule of thumb for estimating 
the total memory consumption of an image is to multiply the pixel width and height of the 
image by four bytes to get the number of bytes. For this image, the memory consumption 
would be upwards of 0.06 megabytes after conversion from bytes. This image is very 
small compared to what is expected for this project and it must also be taken into 
consideration that this is just one image. It is highly improbable that a computer vision 
algorithm would be able to accurately recognize an object that is more than 20 feet away 
from an image that is 128x128 pixels. Figure 3.7 visually demonstrates just how big a 
128x128 pixel image really is. 
 

 
Figure 3.7: An example of a 128x128 pixel image 

(Team Designed) 
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Assume now, that the quality of the camera that will be used for the detection of objects 
farther than 20 feet will stand at roughly eight megapixels - which is about eight million 
pixels. The memory consumption for an image of this size starts at about 30 megabytes. 
If the camera is recording at a rate of 30 frames per second than it can be expected that 
at least 900 megabytes (30 frames x 30 megabytes/frame) of memory will be necessary 
for memory transfer (depending on how the frames are transferred - in this example all 
30 frames are assumed to be transferring at once).   
 
Accounting for all other processes a device must use memory for (e.g. the operating 
system, system services, etc.), it would be of best interest to choose a device that has 1 
gigabyte or more of memory. The more memory in the system the more room for early 
development testing before optimization and avoidance of system crashes from possible 
memory exhaustion. Any less than 1 gigabyte of memory and it is unclear how stable the 
system will remain at the example rate above. Quality of the images produced by the 
camera will have to be sacrificed in order to fit the limitations set by a memory amount 
less than 1 gigabyte. 
 

3.7. Operating Systems 
 
The operating system chosen to run on the main processing unit is Raspbian Jessie. 
Raspbian is a Debian-based distribution of Linux. It is the officially supported operating 
system of the Raspberry Pi, therefore it will help use its computing resources to their 
potential. It comes with Python 2 and Python 3 preinstalled, therefore there will not be 
any problems porting our code to the Raspberry Pi. Afterwards, it is a very straight forward 
process to install OpenCV Python bindings.  Another reason why Raspbian Jessie is right 
for the Raspberry Pi is that the Arduino IDE is available for it. This is very important as 
without it there would not be a way of the Raspberry Pi and Arduino microcontroller to 
communicate with each other.  
 
ROS (Robot Operating System) is a software platform designed to make robotics 
software more manageable. It is not a desktop Operating System but it runs on one. It 
contains libraries of code commonly used by robots such as to interface with hardware, 
and software like OpenCV or Point Cloud Library. 
  
 ROS simply makes the integration of a system of components easier to handle. It uses 
a publish/subscribe model to enable message passing through what are known as nodes. 
Nodes can be a computer, or any electrical device end point. 
  
ROS is compatible with Linux, Mac OSX, and Windows. It can be run on the Raspberry 
Pi, and can integrate it with the Arduino.  

 
3.8. Motors 
 
This section of research focuses on the motors that will be used for this project. In order 
for our robot to able to move and transport itself around a field of interest, motors will be 
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required. There are several motors needed in order to make the robot functional. The 
robot will need DC motors to transport itself in any direction by means of manual 
navigation. The robot will also need a stepper motor to turn the turret in order to properly 
aim the Nerf-blaster at a target location. Finally, the robot will require a servo motor to 
position the camera to visualize the field of interest. In the upcoming sections will discuss 
these different types of motors and provide background and product comparisons that will 
be served for this project. 
 

3.8.1. Brushed DC Motor 
 
The most important factor in choosing the right motor is knowing the weight load of the 
robot and the diameter of the wheels. A brushed DC motor is designed to be able to 
convert a direct current power source into a mechanical energy.  Since brushed DC 
motors can supply up to four times its torque value without stalling, it would be the ideal 
choice for driving the robot.  
 

3.8.1.1. CIM Motor 
 
CIM motors will be used in a set of four to drive the wheels of the robot. In Table 3.9 
shows a comparison among different DC brushed motors and their specifications.  
 

Name Voltage(V) No load 
RPM 

Free 
Current 
(A) 

Max 
Power 
(W) 

Stall 
Torque 
(N-cm) 

Stall 
Current(A) 

2.5” CIM 
Motor 

12 5310 2.7  337 2.42 133 

9015 Motor 12 16000 1.2 179 428 63.8 

Banebot 
RS- 540 
Motor 

4.5-12 16800 1 - 278.8 42 

 NeveRest 
40 
Gearmotor 

12 6600 1.2 138 396 11.5 

Table 3.9: Comparison of CIM motors 

 
3.8.2. Servo Motor 
 
The camera that will act as the eyes for the robot will need to be able to stay fixed on the 
targets it is detecting while the robot is in drive mode. A servo motor will be used to allow 
the camera to rotate independently as the robot moves. These motors are the best fit for 
keeping a camera in a fixed location because they provide precise angular or linear 



 

29 
 

position. It uses a closed-loop servomechanism that can provide position feedback to its 
initial and final position. The only cons to servo motors is they tend to draw a lot of current 
so choosing the right battery power will have to be taken in consideration. Table 3.10 
contains comparisons to servo motors that will be considered for the project. 
 

Name Size (mm) Speed Torque Connection 

Futaba S3004 
Standard Servo 
Moto 

41x30x36 0.19 
sec/60o 
at 6V  

4.1 Kg-cm at 6V Standard J-type 
connector 

HS-422 Servo 
Motor 

41x20x37 0.16 
sec/60o 

4.1/5 Standard J-type 
connector 

Table 3.10: Comparison of Servo motors 
 

3.8.3. Brushless DC Motor 
 
Lastly, a brushless DC motor will be needed to turn the Nerf-blaster to target location. 
Brushless motors are highly considered since positioning the Nerf-blaster will need an 
accurate location and are normally controlled by a computer processing. They can also 
rotate in an equal number of steps. Since our Nerf-blasters will not exceed more than 5 
pounds, a stepper motor with minimum standard torque can be used. A comparison of 
Brushless DC Motors is seen below in Table 3.11. 
 

Name Size Voltage/Current Holding Torque Step Angle 

ROB-09238 48x42mm 12V/0.33A 2.3kg*cm 1.8 

RB-Spa-983 48x42mm 3V/1.7A 48N*cm 0.9 

Table 3.11: Comparison of Brushless DC Motors 
 

3.9. Autonomous Detection 
 
The central task of this project is for the robot to autonomously detect and attack its 
targets. This will be a challenge because there will be a lot of unknowns it will have to 
overcome. The robot will be placed in a course we have never seen before. It will need 
to shoot at the opponent’s robot which we will not have a visual description of beforehand. 
And there will be course obstacles in the way which the robot will not be allowed past, 
and thus will hide and occlude the targets. Those are some of the unknowns that will pose 
a challenge and it will also need to attack stationary course targets, which are going to be 
large pictures of faces mounted on easels about two feet high. 
 
Due to the complexity of these problems the team has decided to use a set of computer 
vision techniques to solve them. Computer vision is an interdisciplinary field that is 
concerned with the automatic extraction, analysis, and understanding of useful 
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information from digital images and videos. Computer vision is a field closely related to 
Artificial Intelligence and has applications in agriculture, autonomous vehicles, forensics, 
robotics, security and surveillance, and the list goes on. Common subdomains of 
computer vision include scene reconstruction, event detection, object recognition, motion 
tracking, and facial detection. 
 

3.9.1. Computer Vision Software Frameworks  
 
It has been decided that computer vision would be our robot’s main means of automated 
target detection, but we do not intend to reinvent the wheel as developing a computer 
vision algorithm could be its own entire project. Therefore, our next job is to select a vision 
software framework with as many functions we need implemented. In this section we will 
look at the different options that we came across.  
 

3.9.1.1. OpenCV  
 
OpenCV (Open Source Computer Vision) is a library of programming functions used for 
both computer vision and machine learning. OpenCV was officially launched in 1999, as 
a research initiative by Intel Corporation. It contains more than 2500 optimized algorithms 
used for facial detection, identifying objects, tracking camera movements, stereo vision, 
and more. OpenCV has a large community with thousands of users, and downloads of it 
in the millions. It is written in C and C++, but it also has programming interfaces available 
for Java and Python. It supports several platforms such as Windows, Linux, Android, and 
Macintosh. It is BSD-licensed product which makes the code available for businesses and 
organizations to use and modify at will.  
 

3.9.1.2. LTI-Lib  
 
LTI lib is an object oriented library in C++ with algorithms and data structures commonly 
used in computer vision. It has been developed by the department of Computer Science 
at Aachen University in Germany, as a part of many research projects with robotics, object 
recognition, and gesture recognition. It was built using GCC under Linux, and Visual C++ 
under Windows NT. It contains over 300 classes dealing with linear algebra, classification, 
visualization tools, and image processing. The system requirements to use LTI-Lib are 
Windows NT with MS Visual C++ .NET 2003, or a Linux distribution with GCC 3.1 or later. 
LTI-Lib is an open source software available under the terms of the BSD License.  
 

3.9.1.3. MatLab  
 
Matlab is a multi-paradigm numerical computing environment and programming language 
developed by MathWorks. It is a family of products with toolboxes ready available for 
many applications such as control systems, physics modeling, image processing and 
computer vision. The image processing and computer vision packages provide functions 
such as feature detection, object detection, motion estimation, and 3D point cloud 
processing. Matlab is known to be easy to use with its own programming language which 
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was written in C, C++, and Java. It supports Windows, Linux, and Macintosh. Matlab is 
not free, an individual license for the Computer Vision System toolbox costs $1,350.  
 

3.9.1.4. VXL  
 
VXL (the Vision-something-Libraries) is a multi-platform collection of C++ software 
libraries for Computer Vision and Image Understanding. It was created by extracting the 
core functionalities of two large systems: the Image Understanding Environment (IUE) 
and Target Junior (TargetJr) with the purpose of making a light, fast and consistent 
system. VXL is written in ANSI/ISO C++ and is designed to be portable over many 
platforms such as Windows, Linux, and Macintosh OS. As well as the core libraries, there 
are libraries covering numerical algorithms, image processing, coordinate systems, 
camera geometry, stereo, video manipulation, structure recovery from motion, probability 
modelling, classification, feature tracking, topology, structure manipulation, 3D imaging, 
and more.  
 

3.9.1.5. Framework Comparison 
 
After researching vision software framework for our project there we had to consider 
before making a decision. Right off the bat we had to eliminate Matlab from contention 
because of its licensing cost. It is a shame we could not use it, since it is indeed state of 
the art technology with loads of functionality and is raved by professionals in the industry.  
 
We were pleased to find that the other options were available in C and C++, as that would 
facilitate the portability of the software between our development environment and robotic 
platform.  
 
An important factor we needed to investigate was the performance of these vision 
libraries. We came across a benchmark produced in the book titled “Learning OpenCV” 
published by O’Reilly, seen in Figure 3.8. It compares OpenCV to LTI, VXL, and OpenCV 
with IPP using four different performance benchmarks. IPP or Intel IPP is a package of 
optimizations to functions of OpenCV running on a set of Intel x86 and x64 platforms with 
Intel® Integrated Performance Primitives.  
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Figure 3.8: Benchmark of different vision libraries  

(Permission Requested from O’Reily) 
 
As seen in Figure 3.8, in all the tests performed, OpenCV outperformed both VXL and 
LTI. The biggest differences in performance were seen in the image resize tests where 
OpenCV was close to 24 times faster than the next runner up, VXL. The optical flow test 
is also important to us making our decision because it relates to motion tracking, and 
there the results were a lot closer. Still OpenCV was almost twice as fast as the next 
runner up, LTI.  
 
One of the most important factors when choosing a software framework is its 
documentation. All the frameworks provided comprehensive documentation on their 
websites, but we found OpenCV’s to be the most elaborative. Their documentation 
includes class definitions as well as examples of programs showing how to use the most 
common procedures.  
 
All things considered, OpenCV will be our choice of vision framework. It offers the largest 
collection of optimized vision algorithms in one package. It is compatible with the on board 
processing units we considered. It is programmable in the Python language which our 
team prefers due to its ease of learning and in-built data structures and functions. We 
have read parts of the documentation available for OpenCV, and found it very useful. 
Tutorials are available on OpenCV’s website, in books by different publishers, and videos 
online that will make the development process less troubling in case we encounter any 
problems.   
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3.9.2. Object Recognition 
 
A major area of object recognition are what are called feature-based detection 
techniques. There is no exact definition of what constitutes a feature, but they are 
“interesting” parts of images used to describe their contents. There are many types of 
features in computer vision algorithms, and their practicality depends on the application. 
Generally, though, good features can be consistently found over different images of the 
same scene, are robust to transformations such as rotation and translation, are 
insensitive to noise, and are salient. Due to the complexity of the battlebot contests it is 
crucial to combine the detection of different types of features into our target detection 
pipeline. Here I will outline different feature based algorithms. 
 

3.9.2.1. Edge Detection  
 
Edge detection algorithms use a set of mathematical methods to find points in images 
where there are sharp changes in the intensity of a neighborhood of pixels, called edges. 
Edges are important features as they typically occur on the boundary between two 
different regions in an image. This helps determine the shape of objects in a frame, and 
also highlights a region worth looking at. 
  
One of the most prominent edge detectors is the Canny algorithm. It uses a 2D Gaussian 
filter to smooth and blur the image which results in accurate edge detection. Another 
advantage is that it is adaptive to the distribution of intensity values present in image with 
hysteresis thresholding. Other edge detection algorithms use one threshold to decide 
whether a pixel makes a strong edge candidate. If a possible edge has a value equal to 
or greater than the value preset by this threshold, then it is set as an edge. Hysteresis 
thresholding uses two thresholds, one high and one low. If an edge is above the high 
threshold it is passed on as an edge. But if an edge is higher than the low threshold and 
adjacent to a high threshold then it is also passed as edge. This technique helps find 
edges that are not very visible but correspond to the outlining contour of an object. 
 

3.9.2.2. Hough Transform 
  
Hough transform is a technique that builds upon the results of an edge detector to help 
recognize shapes. Edge detection algorithms will find a series of edges which can then 
be linked together to form contours. If there are occlusions of the objects, then the edges 
will not be linked. Hough transform is used to detect lines and circles using these 
individual edge points. 
  
Hough transform begins by modeling the lines that could pass through an edge. Doing 
this for all edges, it will then find the points where these lines intersect. Using a voting 
technique that counts the intersections and a preset threshold, it will determine where the 
most likely lines are found. A similar procedure can be done to detect circles in edge 
maps.  
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This procedure would provide a more revealing set of characteristics of the objects 
encountered. This can help in the detection of the opposing robot’s structure, the 
boundaries of the course which will be clearly marked lines, the shape of the obstacles in 
the keepout zone, and the mounting of the stationary course targets. It is also important 
to note that it is a procedure that can be done real-time, and concurrently with other 
processes.  
 

3.9.2.3. Blob Detection 
 
Another class of feature-based detection we can make use of is blob detection. A blob 
detection algorithm searches images for regions of a similar color or property. We will not 
know what the opponent's robot will look like, but by detecting blobs we will find areas of 
high contrast between objects and a background and objects.  
 
Blob detectors can be simple to program. OpenCV provides function call 
SimpleBlobDetector to search for different types of blobs. Blobs can be searched by color, 
or by area coverage in pixels. Blobs can also be searched by shape. This blob detector 
can find concave or convex shaped blobs. It can also find lines, ellipses, and circles.  
 
This could be a very easy way of detecting our targets, but it will definitely take a lot of 
tweaking to provide reliable results. 
 

3.9.3. Motion Detection 
 
Potentially one of the biggest considerations for this project is the idea of using motion 
detection in order to autonomously track, aim, and fire at an enemy robot or medic. 
Utilizing computer vision techniques, motion detection will allow for tracking of moving 
objects through the use of two sensor modalities chosen for this project, a camera and a 
rangefinder. Since the only objects that will be in motion within the frame will be targets, 
it is safe to assume that every moving target can be shot at accordingly.   
 
Although motion detection provides key advantages to the possibilities of solving the 
proposed system’s problem, environment conditions as well as the fact that the robot itself 
will be in motion are all things to consider before choosing motion detection as a solution 
to this project. Since the field will be in an indoor environment, it is likely that the objects 
within the room will be clearly distinguishable from the rest of the environment. Knowing 
that the team robot will be mobile presents a more challenging problem to effectively track 
enemy moving targets. This creates two independent motions that must be considered; 
these motions are named the ego-motion of the team robot and the external motion of the 
targets. This processing of both motion algorithms must be done in real time in order to 
effectively shoot at the desired target. 
 
Source [32] provides a detailed explanation as to how the ego-motion algorithm can be 
used in accordance with a mobile robot in order to detect moving objects. As a summary, 
ego-motion is considered a coordinate conversion procedure that computes a 
transformation. It is important to eliminate the ego-motion from the image in order to take 
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into account the real position of an object in motion. This allows for more accurate motion 
detection and prevents errors of stationary objects being labeled as moving objects. If 
motion detection is a plausible solution that is chosen, it will be imperative to consider 
ego-motion, as the designed robot shall be in motion throughout the length of the 
competition. 
 
Another thing to consider when using motion detection for real time tracking is that noise 
can be present during processing. Noise handling algorithms can be a solution to prevent 
unnecessary intervention and miscalculation with the motion detection algorithm. Ideally, 
the noise handling algorithm can be used as a secondary processing method. For 
example, with the high possibility that a monocular camera will be used in this project, 
there is a chance some objects may have noise on certain boundaries since there is a 
lack of depth. One way to solve this problem, as discussed in source [32], is to estimate 
the position and velocity of the moving object. 
 
The rangefinder utilized in this project will provide the system with further information in 
order to implement motion detection effectively. Combining both the camera and the laser 
rangefinder, a projection of the rangefinder can be used onto the current image position. 
The rangefinder then can allow for some 3D positioning information that can be beneficial 
in effectively tracking the moving targets within the robot's’ line of sight. Allowing for more 
depth information can ultimately lead to further accuracy of the proposed system.  
 

3.9.5. Range Detection 
 
Range detectors work by a simple system of send and receive. A signal is sent out in the 
direction of the object in question. Once this signal hits the object it bounces back and 
returns to the source it was emitted from. The calculations are then processed depending 
on the type of signal that was sent out in order to determine how far the object is. 
 
Take laser rangefinders for example. They work by pointing a laser at an object and 
waiting for the laser’s reflection to bounce back. Lasers travel just as any light does - by 
the speed of light. Therefore, since the speed of light is constant, distance can be 
determined by multiplying the speed of light by half of the round trip time (otherwise known 
as Time of Flight) of the laser. The formula for calculating the distance as a mathematical 
expression is: 
 

Speed of Light (m/s) X ½ Time of Flight (s) = Distance (m) 
 

Ultrasonic rangefinders work in a very similar fashion to laser rangefinders. A high 
frequency sound is emitted towards an object of interest and the time it takes for the 
sound to return is recorded. Fortunately, sound also travels at a constant speed so long 
as the air is dry. The same formula applies, albeit replacing the speed of light with the 
speed of sound. The formula for calculating the distance as a mathematical expression 
is: 
 

Speed of Sound (m/s) X ½ Time of Flight (s) = Distance (m) 
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3.9.6. Stereo Vision 
 
This section will highlight the capabilities of a stereo vision and break down the process 
of how stereo vision operates. Stereo vision may be beneficial in this project by giving 
further capabilities to 3D image processing. Stereo vision also has the capability of being 
integrated with SLAM as discussed in section 3.2.1. A list of stereo vision cameras will 
also be listed to give some examples as to what sensors may be compatible with the 
proposed system. 
 
Stereo vision consists of two or more cameras; these cameras allow extraction of 3D 
information from digital images. By having two cameras, the ability to infer depth by 
triangulation becomes a possibility. This is possible by finding corresponding points in the 
two images. 
 
In order to successfully explain how stereo vision works, variables will be defined. If one 
considers two points, P and Q, that are within the same line of sight as the image R, the 
planes will project onto the same image plane. Being able to narrow the search space for 
corresponding points from 2D to 1D, these corresponding points can be placed on the 
same image scanline. This is known as standard form. Standard form allows for 
“perfectly” aligned corresponding points with the same focal length. 
 
Stereo vision uses disparity and depth in order to successfully process 3D information. 
Disparity is calculated with the use of similar triangles; in reference to the two 
corresponding points, it is the difference between the x coordinate. As points are closer 
to the camera, the disparity increases. Depth can be broken down into a certain amount 
of parallel planes which corresponds to each disparity value. The depth them makes up 
the range field otherwise known as horopter. 
 
A stereo vision system consists of four main parts; calibration, rectification, stereo 
correspondence, and triangulation. Calibration includes both intrinsic and extrinsic 
parameters such as focal length, image center, and alignment of the two cameras. 
Rectification uses the calibration in order to remove any lens distortion and also makes 
sure the stereo images are in standard form. Stereo correspondence attempts to find 
homologous points if they exist in the two images. Finally, triangulation is the calculation 
of the correspondence discussed earlier. Each of these parts are crucial for successful 
implementation of a stereo vision system. 
 
An analogy that aids in further understanding of the concept behind stereo vision is 
similarity to human vision. Just as an individual has two eyes, stereo vision uses two 
cameras in order to portray a 3D depiction of an environment. In the human body, each 
eye has a slightly different view of the same environment. With stereo vision, each camera 
has a slightly different view by capturing an image of the environment at the same time 
Using geometric properties, a successful 3D picture can be developed from these two 
images. 
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Stereo vision has some key advantages that make using the system more appealing for 
any robot project that may need 3D information. Stereo vision is a both effective and 
reliable approach that allows a more practical approach to tracking and detecting objects. 
Also, it is a passive sensor, meaning that a stereo vision sensor cannot be affected by 
the environment. Its ability to extract information such as dimensions and color adds to 
its usefulness in robotic systems. 
 
There are also some issues that may arise while implementing a stereo vision system. 
One of which is the possibility of distortion and noise in an image. If distortion or noise is 
present in an image, it may be hard to render a 3D representation of the images. Specular 
surfaces can also cause an issue with stereo vision systems considering the reflective 
surface will diminish its actual appearance in 3D rendering. Thankfully, in this project, the 
use of reflective surfaces is forbidden, so there is less concern about this issue. 
Foreshortening, ambiguous regions, and perspective distortions are also some issues 
that can occur. 
 
Stereo vision cameras are outlined below in Table 3.12. Table 3.12 includes different 
price points, different capabilities, as well as key specifications to look for while comparing 
these cameras for this project. Some things to consider while choosing a camera for this 
project is how many frames per second are necessary to complete the objective, keeping 
in mind that focal length will be constantly changing, and how to connect this camera to 
corresponding components. As Kinect is one of the top sensor choices for this project, it 
has been written about separately in its own section (reference 3.3.2.3). Prices of stereo 
cameras are very high for the desired budget, comparing prices is key. 
 

Name/Option Price 
($USD) 

FPS Resolution Pros/Cons 

Kinect 3D 
$132.04 30 1280x960  

Great camera for budget. 
Compatibility may be an issue. 

BlackBird 2 3D 
FPV Camera 
  

$179.00 60 680x512 
Has great reviews; most 
expensive camera choice; very 
high up on $1000 build budget. 

NerdCam3D Mk.2 
Stereoscopic FPV 
3D Flight Camera  

$149.99 N/A 640x480 

Cannot find exact frame rate for 
product. Product reviews are not 
found; hard to gauge 
performance. 

BlackBird 1 3D 
FPV Camera 

$89.00 30 656 x 492 

Decent camera for the price. 
Older model of the BlackBird 2. 
Kinect 3D is not much more for 
a much higher resolution. 

Table 3.12: Comparison of Stereo Vision cameras within budget 
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3.9.7. Facial Detection 
 
Perhaps the easiest target to detect will be the stationary targets. This is because apart 
from taking advantage of the fact they are stationary and that their location on the course 
will be known, we are told they will be pictures of faces. This is an enormous detail 
because to detect faces we can use one of computer visions best work, facial detection. 
  
Facial detection is perhaps the most reliable target detection we will have. The reason is 
that there happen to be machine learning programs trained for this purpose. Machine 
learning algorithms or classifiers use what are called training sets, to learn the best 
distinguishing features found in objects you label. Essentially you feed the classifier a 
dataset composed of pictures with faces and pictures without faces. You teach the 
algorithm what the pictures contain and the algorithm determines a model that predicts 
what a new test image contains. Machine learning algorithms can have very high 
accuracy rates, but they require large datasets with hundreds of training images. Since 
we will not acquire any images of the other team’s robots or the obstacles on course there 
will be no way of training an algorithm to detect them. 
  
The Haar Feature-Based Cascade classifier is one widely known method of facial 
detection. This face-detection algorithm is already implemented in OpenCV. It is believed 
to be a reasonable solution because it will not require the collection of a dataset or training 
of a classifier. It is ready to use with a few lines of code and can perform in real-time.   
  
In the end, facial detection is only one part to our target detection pipeline. It will be 
processed concurrently with the other detection algorithms. The detection of faces will 
give us a form of receiving points, and orienting the robot on the course.  
 

3.9.8. Histogram Equalization  
 
There are many potential downfalls to computer vision techniques. One possible problem 
we may encounter is with the brightness of the lighting at the course. It is probable that 
the lighting at the competition will be different to the conditions we develop and test under. 
This could change the outcome of our vision algorithms as they depend on the intensity 
of pixels to calculate their procedures. 
  
We cannot change the circumstances of the course, but we can try image processing 
techniques such as histogram equalization to correct them.  A histogram is a method of 
counting the pixel intensities found in image. Histogram equalization attempts to flatten 
or even the distribution of pixel intensities to increase contrast.  
 
As seen in the first image, Figure 3.9, the frequencies of the middle pixel values dominate 
the image. This can pose a problem to object recognition techniques such as edge 
detection. The second image, Figure 3.10, shows the results of the histogram equalization 
method in OpenCV. It is easy to see that the puppy is more salient and can be 
distinguished from the background.  
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Figure 3.9: Original low contrast image  
(Permission Requested from OpenCV) 

 

 
Figure 3.10: Shows Histogram Equalized Output  

(Permission Requested from OpenCV) 
 

3.10. Power 
 
Power is the most important factor for the robot. Without power, the robot cannot function. 
The robot for this project will need to have enough power to supply the sensors, motors, 
motor controllers, microcontrollers, and computer processor. Since the battery must be 
able to last up to two 10 minute rounds, it is important to know what type of battery will 
best serve this project. Usually selecting a battery is the last component to add to the 
project, since there are calculations for each component and a desired lifetime of the 
robot. Once all the components are assembled, the battery can be chosen.  
 
However, not all batteries are the same. Some require more maintenance than others 
and some batteries will not last as long as others. In this chapter, several different types 
of batteries are researched to compare the advantages and disadvantages of each. There 
are also different battery products that were examined to best function for this project. 
 

3.10.1. Sealed Lead-Acid 
 
Sealed Lead-Acid batteries are most commonly found in automobiles and small vehicles. 
What makes lead-acid batteries unique, is the ability to supply bulk power at low cost and 
that they are the most reliable and cost effective batteries on the market. They are very 
robust and take plenty of abuse without failing. They can discharge high current with ease. 
Sealed lead-acid batteries are capable of having a long shelf life and can be left on trickle 
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or float charge. These batteries can come in several different capacities and have a large 
range of sizes to choose from.  
 
There are some disadvantages in sealed lead-acid batteries. These batteries are are 
heavier than any other battery and can only have a charge efficiency of 70% after a certain 
amount of cycles. These batteries can take up to 14-16 hours to fully charge. These 
batteries are also prone to leaking and not very environmentally friendly. Deep cycling 
can also drain the battery life since there is a charging memory.  
 
For this project, it would be ideal to use a sealed lead-acid battery as they are the most 
heavy duty battery capable of powering the battlebot robot. Table 3.13 contains the 
comparisons between 12v, 3ah sealed lead acid batteries in terms of performance, size, 
and price. 
 

Type Brand Max 
cycles at 
100% 
discharge 

Weight 
(lb) 

Dimensions 
(in) 

Capacity
(AH) 

Price 
($USD) 

AGM SLA Duracell 150 3.0825 5.28x2.64x2.
63   

3.3 $30.99 

AGM SLA Pirate 
Battery 

- 4.00 3.54x2.76x3.
98 

4.0 $21.00 

Table 3.13: Comparison of Sealed lead acid batteries 
 

3.10.2. LiFePO4 
 
Another alternative for a battery is the Lithium Iron Phosphate battery, or LiFePO4 for 
short. These type of batteries are commonly found in electronics, vehicle use, and backup 
batteries. They are a relatively new battery technology, invented in the 1980s.  While 
cordless tools and laptops rely heavily on this type of power, LiFePO4 batteries are known 
for being much safer than the sealed lead-acid batteries and can recharge much faster. 
LiFePO4 batteries also have a larger useable charging capacity, over 50% more than a 
sealed lead-acid battery, and have a lifetime cycle use of over 10 times the lifespan than 
of a sealed-lead acid battery. There is no risk of overcharging with an LiFePO4 battery. 
Even after 2000 cycles, an LiFePO4 battery can still supply 80% of its discharge. It is also 
known that the LiFePO4 battery can still supply the same amount of output voltage at 
20% as it would at 80% discharge. According to the PowerTech Systems website, the 
LiFePO4 batteries are over 77% smaller and 194% than a sealed lead-acid battery. Even 
with a smaller size and smaller weight, the energy and power supply remains constant.  
 
There are not too many disadvantages of a LiFePO4 battery to name. A LiFePO4 battery 
is expensive to manufacture and requires a complicated circuitry to maintain and regulate 
the battery’s safety and control. LiFePO4 batteries are also sensitive to overheating and 
there are known safety concerns in which these batteries can explode or catch fire.  
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Therefore, LiFePO4 batteries will be of great consideration for powering the computer 
processing and the PCBs for this project. They have a small nominal voltage, are 
extremely lightweight, and can supply constant voltage no matter how discharged the 
battery may be. 
 
A few selections have been made in either considering the battery to power the entire 
robot or just supplying power to the electronics such as the microcontroller and PCB 
design. Table 3.14 contains the specifications for batteries of choice. 
 
 

Product ID Voltage (V) Capacity 
(mAh) 

Charging 
Rate 

Weight Price 
($USD) 

LiFePO4 
18650 
 

12.8 2200 2.2A standard 295g $80.00 

Tenergy Li-
Ion  

 

7.4 2200 0.4A standard 99g $13.99 

Table 3.14: Comparison of LiFePO4 batteries 
 

3.10.3. NiMH 
 
A nickel-metal hydride (NiMH for short) battery is a popular choice among consumers for 
being the most reliable and low cost rechargeable battery. They can behave like a nickel 
cadmium battery, but with the different chemical responses and NiMH contains a higher 
energy density and three times the capacity. Some would say NiMH batteries are a less 
expensive version of the lithium ion battery.  
 
For charging NiMH batteries, there is a risk of overcharging and some companies suggest 
keeping the charging time between 10-20 hours. Trickle charging is the safest method. If 
the battery is heating up during trickle charging, then the current supply is too high and 
could lower the efficiency of the battery. Although trickle charging is the safest, NiMH 
require fast charging in order for NiMH batteries to last longer. Lower current charging 
can cause battery memory, which is a case where a battery can lose its capacity over 
time.  
 
The few disadvantages of a NiMH battery are that these batteries have a short shelf life 
due to the fast charging they require and the battery memory it can develop. They also 
require a complex charging algorithm. These batteries can generate high heat during 
charging and contain a high self-discharge. For choosing NiMH batteries, there is an 
incredible amount of resource in these kind of batteries. These batteries may be chosen 
because of their charge capacity, the time it would take to charge them, and their cost. 
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Table 3.15 shows a side by side comparison between two batteries to consider for this 
project. 
 

Product ID Capacity Dimensions Weight Price ($USD) 

#9311 12V/300mah 60x30x19(mm) 3.8oz $22.50 

#6056 12/800mah 51x20x46 4.8oz $16.95 

Table 3.15: Comparison of NiMH batteries 
 

3.10.4. LiPO 
 
The research for the battery suitable for this project goes further with LiPO batteries. 
These batteries are popular among consumers who look to use batteries over radio 
frequencies and require high power output. If our robot needs a video datalink and the 
use of radio frequencies to manually operate the robot remotely, the LiPO battery will be 
able to provide enough energy to do so. 
 
LiPO batteries contain some advantages over the NiMH batteries and there are a few to 
name. The first advantage from LiPO batteries is that these batteries are much lighter in 
weight, these batteries can offer higher capacities, and can project a higher discharge 
weight than of a NiMH battery. LiPO battery cells are stored in pouch form which allows 
them to be lighter and be flexible on retaining shape. This can be considered if there is a 
lack of space and strict weight limitations in the project. Every battery contains a setback 
or two and the LiPO battery will definitely hold some disadvantages. These disadvantages 
are that they have a shorter life span than of any of the batteries that have been 
compared. There are safety issues, such as the risk of a fire or explosion occurring if 
these batteries are punctured. These batteries also require special care for storing and 
charging.  
 
LiPO batteries have a nominal voltage of 3.7V. If more voltage is required, they can simply 
be added in series. The capacity of a battery can be determined just like any other battery 
from the amp hour these batteries can consume. LiPO batteries can consume anywhere 
from 30mAh to 22,000 mAh. Another factor to consider is the discharge rating of the LiPO 
battery. This is the amount of discharge a battery can give without ruining the battery. The 
notation ‘C’ is used to determine the capacity in amps. Most applications will use 20 or 
25C as a battery but for heavier duty applications such as a truck or large vehicle, 40C 
battery would need to be used.  
 
Table 3.16 below contains the results from research on several LiPO products that could 
potentially be used for this project to best serve powering the motors, microcontrollers, 
and sensors. 
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Brand Voltage (V) Discharge 
Rate (C) 

Capacity 
(mAh) 

Price ($USD) 

Dynamite  11.1 25 1500 30.99 

Ellite 11.1 20 1000 24.99 

E-flite 11.1 20 1250 23.99 

Table 3.16: Comparison among different LiPO products 
 

3.11. Voltage Regulators 
 
Voltage regulators are used in order to maintain constant output voltages. These are 
important for power distribution and stability. While motors need to operate on 12V or 
less, circuit boards and microcontrollers require much less voltage and current, such as 
5V or 3.3V.  The next two subsections of this chapter explore the options of how linear 
and switching voltage regulators will be beneficial in maintaining constant voltages for this 
project. 
 

3.11.1. Linear Voltage Regulators 
 
The circuits in our project will need a constant voltage to avoid the risk of instability or 
overpowering the circuit. Linear voltage regulators contain a voltage controller current 
source in order to maintain a constant voltage at the output. Texas Instruments suggests 
that one must follow a few different requirements when picking out the appropriate voltage 
regulator.  
 
For the best application there must be some evaluation in knowing the maximum load 
current, the kind of input such as a battery power source, the output voltage precision, 
and what special features are available. These requirements are known from previous 
sections in what kind of current our motors, microcontrollers, and sensors will use. Since 
our components are in a range from 3.3V to 12V voltages and 1A to 3A currents, there 
are a few linear voltage regulators that could be deemed suitable for the purposes of our 
project.  
 
For the maximum load current, one must take into consideration an important value of the 
load current. Ultimately, the regulator must be able to withstand worst case scenarios in 
order to maintain a reliable performance. If our microcontroller is going to operate around 
500mA, it would be ideal to keep that as the maximum current for the proposed system.  
 
Our input source will be a battery. For applications of a battery power source, LDO 
regulators will be used as they are highly recommended since they can utilize the 
available input voltage fully. 
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Finally, special features - these are provided to add flexibility to our design. Some of these 
features in LDO regulators include a shutdown pin which can allow a regulator to be shut 
off through a microcontroller. Another special feature is a load-dump protection, which 
can be considered for the motors where a regulator can automatically shut down during 
overvoltage and turn itself back on when the overvoltage passes. All of these special 
features will be taken into consideration with the development of the proposed system’s 
design. 
 
Some of the choices in voltage regulators to take into consideration are the LM78xx 
series. These voltage regulators are easy to install and are low in cost. The LM7905 
voltage regulators can supply an output current up to 1.5A and can take in a range of 7V 
to 25V. 
 

3.11.2. Switching Voltage Regulators 

 
Switching voltage regulators, like the one seen in Figure 3.11, are also an important 
device in power and voltage regulation in electronics. They can regulate an input voltage 
by switching on and off a series element to maintain a constant voltage. These devices 
can operate very much like a linear voltage regulator, but can be used for higher voltages 
in order to avoid wasting a lot of power. Linear voltage regulators are beneficial to lower 
voltages therefore switching voltage regulators will be used in keeping a steady voltage 
amount the motors. Switching voltage regulators are fully conductive devices when turned 
on or completely shut off, so no power is dissipated, allowing these devices to be high in 
power efficiency. They can also convert DC to DC power more efficiently than that of a 
linear voltage regulator.  
 
There are many switching voltage regulators on the market. The choice of a voltage 
regulator can vary based on how much frequency is needed for switching as well as what 
range of voltage regulation is required. These frequencies range from 300 kHz up to 4 
MHz, allowing full flexibility for this project. The choice of using switching voltage 
regulators will be determined if, during testing, there is a high dissipation of heat within 
linear voltage regulators or if a large heatsink would be undesirable.  
 

 
Figure 3.11: DE-SW050 Switching Voltage Regulator 

 (Permission Granted by Dimension Engineering) 
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A common switching voltage regulator would be the DE-SW0XX family of switch voltage 
regulators shown in Figure 3.11. These devices allow for taking in any voltage and 
stepping it down to the 5V voltage requirement suitable for microcontroller. It can step 
down these voltages in an efficient manner with no power dissipation, up to 87% 
efficiency. There is a drop out voltage in which the regulator will not be able to regulate 
power and that is at 1.3V. It drives a continuous output current of 1A and has the ability 
to drive inductive loads. It can also work off a breadboard for easy prototype testing and 
hardware designing.  
 

3.12. Chassis 
 
The chassis of the robot will be the outer case to protect the internal components and 
provide a protective layer against incoming projectiles from enemy robots. The chassis 
will be designed and provided by the Mechanical team. The design is focused around the 
design of a military tank. Following the specifications of the size, which is limited to 3ft x 
3ft x 3ft, all the electrical components will be able to fit within the case of the robot with 
the turret and sensors elevated by a tripod structure from the center of the robot’s chassis. 
The material for the chassis will be manufactured by Lockheed Martin and is planned to 
be 3D printed. The material for this chassis is to be made of ULTEM resin, which provides 
incredibly high thermal resistance and high strength and durable stiffness. 
 
Figures 3.12-3.15 illustrate how the body of the robot is built. Figure 3.12 shows the front 
view of the chassis. As seen in the figure, there is a platform with 4 walls inclining inward 
for stability. All the circuit boards will be placed on the platform and will be protected by 
the walls of the chassis.  
 

 
Figure 3.12: Front view of chassis 

(Team Designed) 
 
In Figure 3.13, there is the bottom view of the chassis. This is where all the motors will be 
mounted with any necessary wires to be placed along the perimeter of the robot. The DC 
motors will be connected and wired through holes that will be drilled into the platform so 
that the wires will remain organized and secured throughout the competition. 
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Figure 3.13: Bottom view of chassis 

(Team Designed) 
 

 
Figure 3.14: Side view of chassis 

(Team Designed) 
 

Figure 3.15 shows a model of the desired look for the battlebot robot. The two Nerf-
blasters will be mounted in the middle and will rotate freely from the platform of the robot. 
There will be two sensors in the middle of the two Nerf-blasters to produce the firing 
mechanism subsystem. This subsystem will be mounted onto a rotating tripod structure. 
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Figure 3.15: Completely assembled robot 

(Team Designed) 
 

3.13 Digital Switching Devices 

 
This chapter goes into the research of the different types of digital switching devices that 
will be used to convert all manually triggered nerf-blasters to be triggered digitally. All 
subsections will discuss the technology behind these devices and list and advantages or 
disadvantages these devices may have. Then there will be a product comparison to be 
considered for this project. 
 

3.13.1. Bi-polar Junction Transistors 
 
Bi-polar junction transistors or BJT for short are the most common components for circuit 
control. These devices are used to create simple electronic switches and are found mostly 
in complex integrated circuits, computer memories and microprocessors. These 
transistors are semiconductors that allow current to flow through the material based on 
temperature or another source of electrons added. 
 
Figure 3.16 shows an example of the BJTs in NPN and PNP configuration. A BJT contains 
three terminals, labeled emitter, base and collector. Each terminal is stacked close 
together and contain a different material that will allow current to flow or stop current flow. 
The emitter and the collector terminals are made of material that will give off a negative 
charge. The base is made up of material that allow positive electrons to flow. As the base 
is given a current this creates a channel for both the emitter and collector for current to 
flow. If the base terminal has no current source, the current flow comes to a halt. So just 
like a switch used to turn on and off a system, the BJT serves the same purpose but uses 
current to turn off and on a circuit. 
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Figure 3.16: BJT example  

(Permission Requested from Sparkfun) 
 

The BJT will be extremely useful for this project for controlling different components 
through electrical design. BJTs are very inexpensive and are available for use just like 
resistors and capacitors. 
 
The biggest advantages to the BJTs is that these devices can provide high speeds in 
switching since BJTs contain very little input resistance. They are also more linear in the 
amplifying stages and where the gain will not depend on biasing voltage. 
 
The disadvantages to BJTs are a few to name. This includes that BJTs are driven by 
current rather than voltage to turn on. They also have lower input impedance which could 
pose a problem for outputs that require a higher output impedance.  
 

3.13.2 MOSFETS 

 
Another type of switching device is the Metal-Oxide-semiconductor field-effect transistor 
or MOSFET for short. These type of transistors behave like a BJT, but take on the 
advantage of requiring less current to turn on. In Figure 3.17, a MOSFET will have three 
terminals. The gate, which acts as the switch when voltage is applied. The Drain which is 
usually connected to ground and the source which will take in a voltage for continuous 
current flow. These devices can be used for power control of a system from just 1mA 
which saves a huge amount of energy.  
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Figure 3.17: MOSFET Diagram  

(Permission Requested from Elprocus) 
 
The advantages that a MOSFET contains they are easy to scale with current than a BJT. 
They are also a lot easier to design stable circuits with. They can operate from 0 to 60V 
and take up to 30A. They are very inexpensive as well. These switching devices can be 
used to trigger the Nerf-blasters for this project. 
 
The major disadvantages that MOSFETs may have is they cannot drive low impedance 
devices very well. There is also an effect of higher input capacitance as the gain of a 
circuit increases. 
 

3.14. Nerf-Blaster 
 
The firing mechanism for this project will be using Nerf-blasters. The rules of competition 
allow a minimum use of one Nerf-blaster that can shoot Nerf-balls and a maximum use 
of two. If a second Nerf-blaster is used it would be required to shoot Nerf-darts.  
 
A nerf-blaster’s function is simple. It acts on a plunger mechanism, as the spring in the 
barrel of the blaster is pulled back, a dart or ball is loaded into it. Once the spring is 
released, air is pressured into releasing the ammo. Since nerf ball and darts are made of 
foam, they can travel at a high velocity.  
 
This battlebot project will use two motorized Nerf-blasters and modify them in a way that 
they can connect to the microcontroller and be able to activate the trigger using logic 
based voltage. This is so when the algorithm finds and locates a target, the firing pulse 
can be sent to the Nerf-blaster. The main casing of the Nerf-blasters will be stripped in 
order to secure on the robot and provide less stress and weight on the servo motors and 
minimize overall size of the robot.  
 
For the Nerf-blaster that will be firing Nerf-balls, the Nerf Rival Zeus MXV-1200 blaster 
(seen in Figure 3.18) has been selected. This product uses a motorized blaster with the 
capability of firing rounds up to 12 high impact rounds at 300mps. The cost of this blaster 
is $49.99.  
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Figure 3.18: Nerf Rival Zeus MXV-1200  
 (Permission Requested from Hasbro) 

 
The second Nerf-blaster that will be used is the CS-18 N-Strike Elite Rapidstrike (seen in 
Figure 3.19). This Nerf-blaster will be firing the more common nerf dart ammo. These 
darts can fire up to 75 feet on this weapon. This gun will require 6V to fire the darts as it 
uses a powering motor to increase the rate of fire. It has been planned to alter the firing 
mechanism for a faster rate of fire and install a larger ammo magazine. The CS-18 N-
Strike Rapidstrike is regularly priced at $39.99.  
 

 
Figure 3.19: CS-18 N-Strike Elite Rapidstrike  

(Permission Requested from Hasbro) 
 

3.15. Motor Controller 
 
While the microcontroller is responsible for sending the controls for direction and speed 
to the motors of the robot, it still does not contain enough power to drive all the motors. A 
motor controller, displayed in Figure 3.20, will be able to work in connection with the 
microcontroller and also connect to the power supply in order to drive the motors. The 
robot will be driven by four DC motors, two stepper motors, and a servo motor. With a 
total of seven motors for powering, there are considerations in choosing the right motor 
controller to do the job.  
 
For choosing a motor controller for the DC motors, the nominal voltage must be known. 
Once the voltage is known, the continuous current is determined. It is important to know 
these two values for balance and stability. Too much current can fry the microcontroller 
and not enough current will not turn the motors. There is also the type of control these 
motors will use. These controllers can be pulse width modulation, analogue vogue, UART, 
or R/C.  
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In section 3.9 Motors, several motors were researched and a motor controller can now 
be chosen. The nominal voltage for the DC motors and stepper were 12V and contain a 
continuous current of 2.875A. The servo motors do not require the same amount of 
voltage and current of a DC motor therefore it is not suitable to connect them in parallel 
them. Figure 3.20 shows a setup of how the motors would be connected to the 
microcontroller and driven by the motor controllers. 
 

 
Figure 3.20: Motor Controller example  
(Permission Requested from Adafruit) 

 
There are thousands of motor controllers available and there is one motor controller that 
will be able to power all seven of the motors. A motor controller to consider for this project 
is the called the Adafruit Motor/Stepper/Servo Shield for Arduino v2. This motor controller 
uses MOSFET technology and contains its own pulse width modulator driver chip for easy 
power control. It has 2 connections for the servo motors, can drive up to 4 DC motors and 
supply power to 2 stepper motors. The price for this motor controller is only $19.99 and if 
more motors will be required later on, this motor controller can stack 32 times, supplying 
up to 128 DC motors.  
 
Another motor controller to consider for this project is the 10A 5-25 Dual channel motor 
shield by Crypton. This motor controller is capable of driving up to two bidirectional 
motors. These motor controllers support both locked-antiphase and sign-magnitude PWM 
operation. Each motor controller is equipped with activation buttons for quick power 
testing. They sell for $23.48 USD per board and the integration step up to this project is 
easy.  
 

3.16. Manual Navigation 
 
Manual navigation is imperative to the development of the proposed system. Manual 
navigation will be the main means of controlling the robot’s movements. This section will 
highlight the research gathered regarding manual navigation. It will include sections 
discussing PID control, odometry model, and how the robot will transfer data in order to 
allow the user to successfully manually navigate wirelessly. 
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3.16.1. PID Control 
 
There are various movements of which each of our different motors will have a 
responsibility for. The four DC brushed motors will be used to drive the wheels of the 
robot around the course like a car. The two stepper motors will be used to aim the Nerf-
Blasters in synchronized fashion. One to pan or move them horizontally and the other to 
tilt them or move them vertically. The last motor or the servo, will be used to tilt the camera 
to keep the target centered in the field of view. In order to direct all these movements, we 
will design a PID controller. A PID controller incorporates a feedback loop between an 
input signal sent to the motors and their outputted physical movement, to smoothly reach 
its goal. 
  
PID controller stands for proportional integral derivative controller. Each of the names in 
the abbreviation are different controllers; each uses a particular model of computing a 
gain to reduce error. Error compares the difference between an input at a given time to 
its desired output or goal. The different functions of these controls are shown in Table 
3.17 below.  
 

Proportional 𝑜 =  𝐾𝑝 ∗ (𝑉𝑑 − 𝑣)  =  𝐾𝑝 ∗ 𝑖 =  𝐾𝑝 ∗ 𝑒𝑟𝑟𝑜𝑟(𝑡) 

Integral 𝑜 =  𝐾𝑖 ∗ ∫ 𝑖(𝑡) ∗ 𝑑𝑡 = 𝐾𝑖 ∫ 𝑒𝑟𝑟𝑜𝑟(𝑡) ∗ 𝑑𝑡  

Derivative 
𝑜 =  𝐾𝑑 ∗

𝑑𝑖

𝑑𝑡
= 𝐾𝑑 ∗

𝑑(𝑒𝑟𝑟𝑜𝑟(𝑡))

𝑑𝑡
 

Table 3.17: PID Control Functions 
 
In the table shown above, “o” refers to the measured output of the motor. The “K” terms 
are constant parameters, which are tuned together. The “i” terms are the error 
measurement, which is the difference between a current position or speed to the desired 
position or final speed. The proportional controls the motor in a manner proportional to 
the instantaneous error. The derivative controller avoids the motors overshooting by 
acting in proportion to the rate of change of the error. The integral controller acts in 
proportion to the accumulated error, which is useful for eliminating steady-state errors.  
 

3.16.2. Odometry Model 
 
We are using encoders in our wheels as instruments of measuring our robot’s movements 
to determine its location in the course. In order to do this, we will need to use an odometer 
model to convert the information read from the encoders to real world coordinates. The 
model we intend to use is detailed below. 
  

● Begin with the following equations relating the change in position of the wheels to 
the circular arc of the turning axis as seen in Figure 3.21. 

Eq(1): Δsl = Rα 
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Eq(2): Δsr = (R+2L)α 
Eq(3): Δs = (R+L)α 

 
Figure 3.21: Odometry p1- Example showing the relations of variables   

(Permission Requested from Princeton) 
 

● Use Eq(1) and Eq(2) 2 to solve for the distance from the right and left wheels to 
the axis of the turn. 

 
Eq(4): Rα = Δsl 
Eq(5): Lα = (Δsr - Rα)/2 = Δsr /2 – Δsl /2 

 
● Substituting Eq(4) and Eq(5) into Eq(3) we represent Δs as a function of Δsl  and 

Δsr. 
 
Δs = (R+L)α = R α + L= Δsl + Δsr /2 – Δsl /2 = Δsl /2 + Δsr /2  
Δs = (Δsl + Δsr) /2 
 

● To calculate the change of the angle of the robot’s orientation Δθ, is equal to the 
circular arc’s center point as seen in Figure 3.22.  

  Δθ = α 

 
Figure 3.22: Odometry p2- Example relating circular α to the orientation 

 (Permission Requested from Princeton) 
 

● Then solve for α by equating α from Eq(1) and Eq(2). 
Δθ = (Δsr - Δsl ) /2L 

 
● With Δθ and Δs we are able to calculate the position change in real world 

coordinates. Using trigonometry to model the Δx and Δy  as  functions of Δd. 
 
Δx = Δd cos(θ + Δθ/2) 
Δy = Δd sin(θ + Δθ/2)  

 
● As seen in Figure 3.23 the paths Δd ≈ Δs are slightly different. The measurements 

will be made fast enough to approximate that Δd ≈ Δs. 
Δx = Δs cos(θ + Δθ/2) 
Δy = Δs sin(θ + Δθ/2)  
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Figure 3.23: Odometry p3- Example denoting difference of Δd  and Δs  

(Permission Requested from Princeton) 
 
Using the above model, we will be able to approximate our robots location on the field. 
The coordinates will not be exact because of the assumptions that were made. Also there 
will be noise from the encoders that will impact the calculations. Other causes of 
inaccuracy to the model can arise from the wheels slipping, hitting a bump, or driving on 
carpet.  
 

3.16.3. Wireless Data Transfer 
 
In order to successfully develop a plan for functional manual navigation of the proposed 
system, different methods of transferring data to a control device must be considered. 
The desired method will have a great impact on how the robot will be programmed. Since 
a requirement of this project is to wirelessly provide video footage of the robot’s 
autonomous tracking capabilities in real time, it is logical that both the video footage and 
the manual navigation will be wirelessly operated through a laptop. One can then control 
the robot solely by viewing the streamed video on the laptop and using the arrow keys to 
navigate accordingly. 
 
Generally, there a three ways that the robot will be able to interact wirelessly with laptop 
in order to successfully navigate through the course environment. The first way that can 
be chosen is using radio frequencies, RF, which uses a transmitter and a receiver to send 
data across a specific frequency. One benefit of using radio frequencies is that they allow 
for an extremely long range. Radio frequencies also allow for a straightforward setup of 
the system. 
 
Two different wireless protocols that can be explored that utilize radio frequencies are 
ZigBee and Xbee. Zigbee allows for a low-cost and low-power wireless connection 
between devices. It can operate at many different frequencies, such as 900MHz, 868 
MHz, and even 2.4 GHz. There is a low latency while using Zigbee, which can be 
beneficial to the proposed system. The data rate of Zigbee is about 250 kps, which is 
much lower than that of Bluetooth and Wifi. Xbee is very similar to Zigbee, as it includes 
all the features of Zigbee, but has new added features. Zigbee’s features already prove 
to be efficient, but lacks in data rate transfer. Unfortunately, Xbee does not provide a 
higher data rate than Zigbee.  
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Although radio frequencies prove to be robust enough to handle manual navigation of the 
system, transmitting the video footage as well with the manual navigation is seemingly 
close to impossible with radio frequencies. Transmitting large files such as video over a 
radio frequency requires a very high bandwidth, which may not be available within the 
region of the competition destination. As stated earlier, a goal set in place is to obtain the 
information for both the video footage and manual navigation through the same means. 
Therefore, other options must be explored. 
 
Another more specific RF option for the manual navigation of the robot is to use Bluetooth 
in order to wirelessly obtain data. Bluetooth will allow for two-way communication of data 
from the laptop to the robot via the Raspberry Pi. Even though Bluetooth is a RF, 
Bluetooth allows for higher data rates than standard RFs, since it follows specific 
protocols for communication. 
 
Although Bluetooth provides a great way to both send the video stream and data from the 
motors for manual navigation, Bluetooth only allows for a maximum range of 10 meters 
in most cases. With the full length of the field being roughly 40 feet, another option may 
prove to be more beneficial. Even though the robot will most likely travel no farther than 
20 feet away from the sidelines, since the robot should be staying in its required zone, 
there could be a possibility where the robot will be more than 10 meters away from the 
controller. If this proves to be a considerable trade off, it may be better to choose another 
option for manual navigation of the robot. 
 
The last option explored for the robot to wirelessly send data for both the manual 
navigation and the video stream is to use a Wi-Fi network. Wi-Fi will allow the user to 
connect to the proposed system from anywhere in the world. Wi-Fi will also provide a 
significantly high data rate that should prove to be sufficient for transmitting both the data 
for the video stream and the manual navigation. However, the competition location will 
not provide Wi-Fi that the robot will be able to connect to. Therefore, a local network may 
be considered a solution to this problem. By establishing a connection between the 
Raspberry Pi and the laptop via a router, the proposed system will be able to indeed 
transmit the necessary data in theory to the laptop. This can be considered the most 
reliable option to providing a secure connection between the proposed system and the 
laptop. 
 
After all options have been explored, radio frequencies, Bluetooth, and Wi-Fi, these 
options were compared thoroughly in Table 3.18 
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Data rate Maximum Range 

Power 
Comparison 

Radio 
Frequencies 

(Zigbee) 
250 Kb/s 7 meters Low 

Bluetooth 25 Mb/s Normally 10 meters Medium 

Wi-Fi 54 Mb/s 
Normally 100 meters, 
but can be unlimited 

High 

Table 3.18: Comparison of Data Transfer Wirelessly 
 

3.17. Part Selection Summary 
 
Table 3.19 below contains a list of the main functional computer/electrical components 
that are to be implemented in this project’s design. 
 

Component Name Quantity 

Image Sensor Logitech HD Pro Webcam C920 1 

Rangefinder LIDAR-Lite 3 Laser Range Finder 1 

Processing Unit Raspberry Pi 3 Model B 1 

Microcontroller ATmega328p 2 

Motorshield 10A Dual Channel Bi-directional DC Motor Driver 2 

Encoder *Attached to NeveRest 40 Gearmotor 4 

Servo Motor Futaba S3004 Standard Servo Motor 2 

Stepper Motor 3V 1.7A 68oz-in Stepper Motor 1 

Voltage Regulator 5V 1A Switching Voltage Regulator DE-SW050 1 

Nerf-blaster (Dart) CS-18 N-Strike Rapidstrike 1 

Nerf-blaster (Ball) Nerf Rival Zeus MXV-1200 1 

Table 3.19: List of main computer/electrical components selected 
 
The Logitech HD Pro Webcam C920, seen in Figure 3.24, was selected as the primary 
vision sensor. This camera provides for better picture quality and more than enough frame 
rate needed. It is highly compatible with other systems as it is attached by a simple USB 
cable, which is included in the packaging. Additionally, the USB cable has a length of six 
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feet; about 60 inches longer than the ribbon cables that come with the other camera 
alternatives. A lengthy cable is necessary as the vision sensor will sit at the highest point 
of the robot and may need to twist and turn.   

 

 
Figure 3.24: Logitech HD Pro Webcam C920  

(Permission Granted by Logitech) 
 

The selected rangefinder was the Lidar-Lite 3, shown in Figure 3.25. While there are 
many alternative products that are capable of finding the range of an object, not many 
seem to provide the desired range and accuracy as does the Lidar Lite 3 at its price point. 
At a regular price of only $150, this rangefinder will be able to detect objects at more than 
three times the length of the competition course and with comparable accuracy of higher 
end models. The use of laser range detection was also attractive as it is more likely to 
come across sound or radio interference than it is to come across light interference since 
the course is set indoors. 
 

 
Figure 3.25: LIDAR-Lite 3 Laser Range Finder  

(Permission Granted by RobotShop) 
 
For image processing, the Raspberry Pi 3 Model B (Figure 3.26) was selected because 
of its affordability and popularity on the market. This microprocessor comes with enough 
memory to allow for image resolution flexibility when running detection algorithms. It is a 
quad-core system which, when threaded properly, should have no trouble processing 
higher frames per second, thus potentially increasing aiming accuracy of moving targets. 
Amongst other features, it includes multiple USB ports, for an easy camera connection, 
and Wireless LAN, for required wireless data transfer. 
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Figure 3.26: Raspberry Pi 3 Model B 
 (Permission Granted by RobotShop) 

 
To compress the amount of subsystems in place and complete the requirement of 
implementing a PCB board, it was decided to combine the microcontroller with the PCB 
board. The selected microcontroller was the ATmega328p (Figure 3.27), which is used 
on the Arduino UNO board. The driving factors for this selection were the very low price 
of this component (inclusive that it comes in pairs of three’s - possible backups) and that 
the amount of pins included with this microprocessor is sufficient for the number of inputs 
and outputs required by the robot. 
 

 
Figure 3.27: ATmega328p  

(Permission Requested from oomlout) 
 
The motor driver seen in Figure 3.28 was chosen because of its ability to handle the 
robot’s estimated power system. The other motor drivers that were considered were found 
not to be able to handle the amount of current necessary for the motors in the system. 
 

 
Figure 3.28: 10A 5-25V Dual Channel DC Motor Driver  

(Permission Granted by RobotShop) 
 

As previously discussed, encoders can be found packaged with gear motors, which 
simplify purchasing and are more affordable as a bundle. The selected gear motor, the 
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NeveRest 40 Gearmotor (Figure 3.29), is one such gear motor that comes with an 
attached encoder. 

 
Figure 3.29: NeveRest 40 Gearmotor with attached encoder  

(Permission Requested from AndyMark) 
 

It is not intended for the camera to be rotating a full 360 degrees, but to pan slightly left 
and right to accommodate the change in direction of the robot (so long as the robot does 
not turn completely around). The Futaba S3004 Standard Servo Motor (Figure 3.30), 
based off reviews, appears to transition smoothly and its packaging already includes a 
bracket for mounting objects. This motor is also very affordable, at a little under $15. 
 

 
 

Figure 3.30: Futaba S3004 Standard Servo Motor  
(Permission Granted By RobotShop) 

 
The stepper motor in Figure 3.31 was selected for its size relative to the torque it provides. 
This motor will be rotating the upper portion of the robot holding other components such 
as the Nerf-guns, camera, and rangefinder so it must be able to support the weight of 
those combined objects.  
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Figure 3.31: 3V 1.7A 68oz-in Stepper Motor 

 (Permission Granted by RobotShop) 
 

The voltage regulator in Figure 3.32 was selected because its specifications met the 
power requirements of the microcontroller. Its long pins also mean that this voltage 
regulator will be easy to test and demonstrate on a breadboard without any special wiring 
or soldering. 

 

 
Figure 3.32: 5V 1A Switching Voltage Regulator DE-SW050  

(Permission Granted by Dimension Engineering) 
 
The Nerf-blasters pictured in Figure 3.18 and Figure 3.19 were selected because of their 
size, loading and firing style, rate of fire, and firing distance. These blasters are within 
requirement size of the robot without having to modify the weapons themselves. The firing 
mechanism for these weapons have the assistance of electronic components. As long as 
the trigger is held and the blaster is fed ammo the blaster will keep on firing and, added, 
at a fast rate. Finally, the shot range for both weapons is more than 40 feet, which is the 
full length of the course. 
 

3.17.1. Part Acquisition  
 
Fortunately, since the proposed system’s design has been sponsored by Lockheed Martin 
with an overall budget of $2,000, we are able to pick out quality parts for the build of our 
system. We chose to search for parts only from reliable retailers, since we wanted to 
guarantee that the parts would arrive on schedule. Listed below are all the retailers we 
have acquired components from thus far for the proposed system. 
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3.17.1.1. Amazon 
 
Although Amazon is known for many home products, Amazon also carries many robot 
parts for a reasonable price. Amazon also provides free two-day shipping for Amazon 
Prime customers, which allows us to stay ahead of schedule with the development of our 
project. With a wide variety of products, reasonable prices, and fast delivery, Amazon has 
become our top contender for part acquisition. 
 

3.17.1.2. Robotshop 
 
Another retailer that carries a very large supply of robot parts is the Robotshop. The 
Robotshop is a very well-known supplier for robot parts. The website URL was provided 
in the prompt of this project as a great guide for research and part acquisition. Although 
the Robotshop prices are often not as low as Amazon’s, Robotshop does provide sales 
at certain times of the year, which our team has already taken advantage of. Overall, the 
Robotshop has been our team’s main source of knowledge for researching different parts 
that are currently on the market in our price range. 
 

3.17.1.3. Sparkfun 
 
The third main retailer that we have used to acquire parts for this project is Sparkfun. 
Sparkfun has similar pricing to Amazon, but does not offer free-two day shipping as an 
option. However, Sparkfun has a wider variety of robot parts than that found on Amazon. 
Therefore, we have used Sparkfun for certain parts that could not be obtained from 
Amazon or for parts listed on Robotshop that are priced too high. 
 

3.17.1.4. Dimension Engineering 
 
Dimension Engineering has only been utilized for some specific parts that cannot be 
purchased at other retailers. For example, the 5V switching regulator was a piece that 
was specifically developed by Dimension Engineering. Therefore, the only place to order 
this product was on their website. This was the best regulator that was found within our 
price range for the proposed system. 
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4. Related Standards and Design Constraints 
 
In this section, there are several different standards that will be used in order to make this 
project successful. There are some related standards out in the market, it is important to 
compare these standards in order to be able to prove that the project is safe, usable and 
stable. This section will explore the different types of standards that are related to our 
project as well as discuss the possible design constraints that this project may face. 
 

4.1. Standards Research 
 
For related standards research, there are plenty of standards that can be compared to 
this project. In this section, one standard is researched through details and analyzing so 
there is a better sense of how to read and use a standard and a table is provided for the 
other standards that can be researched and used. 
 
The first related standard for our project is an IEEE standard denoted “1873-2015 - IEEE 
Standard for Robot Map Data Representation for Navigation.” One of the methods that 
the battlebot robot in our project will implemented is the use of 2D mapping. Therefore, 
this related standard can be used and compared to the robot project. Although this topic 
is very broad, the standard provides a scope of what exactly is being standardized. This 
standard is used for defining terminologies related to 2D robot maps of navigation in 
indoor and outdoor environments. It also specifies a data model for each element and 
defines a format used to exchange this data among other computers and robots.  
 
The importance of this standard is to set a common representation for robot map data in 
a way that can allow an accessible use of software exchange among other robotic 
systems. This standard is used in order to expand the range of application and operational 
use among robots. There is also a section of definitions containing word definitions and 
mathematical definitions in order for the reader using this standard to understand the 
terms being presented as well as define specific words that makes following the standard 
less confusing.  
 
There are several tables in the standard, labeled M/O which defines how often a variable 
or element is to be used. M is for mandatory and O is for optional. There are also detailed 
descriptions for how to format the data between the different type of mapping such as 
metric and topological mapping. 
 
The standard then describes the basic mathematical models that shall be used in 
representing an environmental map as robots navigate and then goes into defining 
specific data formats are introduced. There are a lot of graphs and tables to follow, but it 
is important in being able to make 2D mapping definable and if every 2D mapping system 
uses this, the compatibility of sharing this data set among other systems will be able to 
advance forward in the technology.  This standard sets the language for data to be 
transferred among other robot systems with XML. The standard explains that XML is a 
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platform-independent language, many operating systems use this language and stores 
the files in human readable format. 
 
Table 4.1 contains other relatable standards with a scope, the publish date and a short 
description. 
 

Standard Number Scope Publish date Description  

IEC 62680-1-2 Ed. 
1.0 en:2016 

USB 21 Oct. 2008 Universal serial bus 
interface for power 
and data. 

CISPR 14-1 Ed. 
6.0 b:2016 

International 
Electrotechnical 
Commission 

22 Nov. 2016 Requirements for 
household 
applications, 
electric tools and 
similar apparatus 
that uses DC 
motors. 

802.11-2007 
 

Wireless 
communications 

12 Jun. 2007 IEEE standard for 
information 
technology, 
telecommunications 
and information 
exchange between 
systems. 

1118.1-1990 
 

Microcontroller 31 Jan. 1991 IEEE Standard for 
microcontroller 
system serial 
control bus 

P2700/D1.00 
 

Sensors 12 Aug. 2014 Standard for sensor 
performance. 

Table 4.1: Table of related standards and their descriptions 
 
Each standard follows the same format as to what needs to be included and implemented. 
After looking through one standard in detail, there are several related standards that can 
be considered and followed in the same manner. Since this project contains several 
features and components that will be used to make the robot functional and each 
component can follow this standard. 
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4.1.1. Design Impact 
 
The standards researched and found in Table 4.1 above, although relevant, will not have 
a great impact on the overall design of the Nerf-enabled Battlebot system. This is due to 
a number of reasons. 
 
The computer algorithms for autonomous detection will be built upon open source 
libraries such as OpenCV. This means that a bulk of the algorithm development process 
will have already been predefined.  
 
Connections between system components will not go beyond the scope of what has been 
specified in the corresponding instruction manuals – specific pin connections will not be 
altered (regarding the microcontroller) and USB connections will only be plug and play 
(such as the USB connection to the camera). Vision and range finding sensors will not 
need to be adjusted as their default operations should provide sufficient enough data for 
the requirements of this project. 
 

4.2. Design Constraints 
 
There are several design constraints of the robot that played a role in determining the 
project's feasibility. This chapter analyzes each type of constraint that this project may 
contain from each area of the design. These constraints include consumer, ethical, 
environmental, power, weight, economic, time, and safety. 
 

4.2.1. Size Constraints 
 
An important constraint affecting the design of the robot is its dimensions must not exceed 
3ft x 3ft x 3ft. This is a specification imposed by Lockheed Martin, in order for the robot to 
participate in the Battlebot competition. For this reason, special considerations had to be 
made with the evaluation of electrical components for the system. Also, a custom platform 
was designed by the mechanical team to ensure its volume were efficiently used and 
properly enclosed the components. 
  
Minimizing the dimensions of the robot to meet constraints was a job that began with the 
selection of the electrical components. We had to stray away from choosing desktop-
sized computers to handle the onboard processing. Components such as the 
motherboard, power source, and hard drive would require an enclosure that would put 
our robot near the limit. Instead we focused on finding the most powerful SoC (System 
on a Chip) computer that would be a fraction of the size of a desktop. 
  
Another volume saving driven customization was a modification made to the Nerf-
Blasters. The Nerf-Blasters were stripped of their original housing to be included on the 
turret. By stripping the housing off the Nerf-Blasters, and only keeping the bare parts 
needed by the shooting mechanism, the volume of each Nerf-Blaster is reduced by 5 
inches in height and two inches in width. 



 

65 
 

 Another component affected by the size constraint was the camera. The camera had to 
be near the guns to facilitate the aiming mechanism, but high enough to capture as much 
of the scene as possible without being blocked. Thus the camera was mounted at an 
elevation of about 20 inches above the ground with the Nerf-Blasters sitting on either side.  
 

4.2.2. Ethical Constraints 
 
Ethical constraints apply to this project since there will be a competition between multiple 
groups. The first ethical constraint that must be abided by is to engage in friendly combat 
with other enemy battlebots. This means that any countermeasure used to destroy one 
of the enemy team’s robots can be considered unethical. A few examples of this practice 
could be the use of ammunition other than nerf balls or nerf darts, setting the enemy’s 
robot on fire during the competition, or even purposely manipulating the enemy’s robot 
before the competition. 
 
Another form of a countermeasure that may be considered unethical is somehow 
tampering with the enemy’s capability of sight. This means that blinding the enemy robot’s 
vision may be considered unethical, since the enemy team will not be able to demonstrate 
their working algorithm accordingly. A way to abide by such ethical constraints is to leave 
out any bright lights in the build of the robot so the competition is fair for all individual 
participants. 
 
Since every group participating in this project is being given similar objectives, there is a 
chance that work from other groups will be fairly similar to the work provided by the Red 
Team. Although hearing information from other groups can be considered a fair practice 
in this competition, it would be unethical to copy work directly from another group. This 
can include code developed by an enemy team, research written by an enemy team, or 
even schematics drawn by an enemy team. 
 
As more information is obtained from further research, it is imperative that all references 
and sources found of similar projects, guides, and information relevant to the project are 
cited at the end of this paper. Any information that is left uncited can be considered an 
unethical practice. Such ethical constraints can be considered standard for research 
papers that are developed. 
 

4.2.3. Environmental Constraints 
 
The environment is defined as the physical surroundings and conditions that will influence 
the performance of the design.  The environment of this robot will be an indoors facility 
such as a conference room, located on either the premises of Lockheed Martin or of the 
University of Central Florida. The exact environment will be determined at a time closer 
to the competition date due to a possible conflict with the reservation of a room. 
  
The uncertainty of the course means it is necessary to develop a robot capable of 
operating smoothly under different conditions. Conditions such as flooring can have an 
effect on mobility of the wheels, and accuracy of the encoders. Different sets of lighting 
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can affect the vision algorithms which are based on tuning parameters to pixel intensity 
values. 
  
Another condition set for the competition is that each robot must stay within the confines 
of its designated zone. The designated zones of each robot is a rectangular 10ft x 20ft 
perimeter set on opposite ends of encompassing 40ft x 20ft rectangular perimeter. 
Between the two zones is an obstacle zone, where robots are docked points for crossing 
into. This has influenced about every main component. The camera had to be chosen to 
provide a clear image of objects that would be meters in distance away. The Nerf-Blaster’s 
shots had to travel ranges without dropping. The range detector would be used to 
determine the likelihood a detected target is in an expected zone and not within its own 
zone or outside of the course. 
  
A condition set by Lockheed Martin is to have live video of the robot’s point of view, with 
overlay of the automated target detection. This absolutely had an influence on our setup. 
Specific solutions had made just to transmit this amount data wirelessly, taking into 
account that an internet connection would not be made available to us. An important factor 
we must look out for is the possible interference between the wireless transmission 
protocol chosen and nearby electrical devices or the opponent's robots wireless 
transmitter.  
 

4.2.4. Power Constraints 
 
As this Nerf-enabled battlebot will be used in competition against other battlebots for two 
rounds, each ten minutes long, it is important to supply the battlebot with enough power 
to run the full duration of each round. 
 
While it may not be necessary to provide the robot with a power supply strong enough to 
last two consecutive rounds (or 20 minutes), it would be beneficial to place the power 
supply in an area that is easy to access and modify. In this manner, the battery could be 
swapped out in-between rounds, reducing the minimum power usage length by 50% or 
ten minutes. 
 
The weight and size of the power supply is also a limitation. It must be light enough for 
the chassis of the robot to support so that the robot can move about and do so without 
also wasting power. Depending on how power is regulated, additional power could be 
drawn to the motors controlling the wheels if the wheels need more torque in order to 
move the robot’s own weight. The power supply must also be small enough to fit the size 
constraints of the robot. 
 
Positioning of the power supply is another factor to consider. The power supply unit must 
be placed on the robot in a such a way that it does not obstruct other components and/or 
wiring. It would pose a threat if the power supply was restricting the movement of a 
mechanical component (e.g. a rotating platform for the camera). It may also be necessary 
(if heating becomes an issue) to provide spacing enough for an open area to account for 
any possible heat transfer methods such as open airflow for a fan and heatsink.  
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4.2.5. Weight Constraints 
 
One of the constraints that the team decided to follow for this project is to consider the 
weight of the robot. Listed in section 2.3, there are requirements listed for both size and 
mobility of the proposed system. The size constraint, S1, states that the robot dimensions 
shall not exceed 3ft x 3ft x 3ft. Keeping this size in mind while also considering 
requirement M1: being able to remotely control the Battlebot, it is very important that 
weight becomes a constraint to be considered throughout the course of the proposed 
system’s design. 
 
Weight indeed becomes a constraint for both extremely light and heavy designs. 
However, for the proposed system, it is more likely that a heavy weight limit will be a more 
pressing concern. If the robot is too heavy, the mobility of the robot may be sacrificed. 
The robot may not be able to move and dodge enemy attack with weight slowing down 
the robot’s movements. The robot’s weight may affect the motor’s ability to move the 
robot. More power may need to be drawn in order to successfully move the motors at the 
speed necessary to move the system. 
 
The proposed system’s overall weight is not the only concern that must be considered. 
There are constraints as to the equal distribution of weight throughout the proposed 
system design. If the system does not have an equal distribution of weight, certain parts 
of the system become more vulnerable. This may lead to the robot tilting a certain way, 
or even cause the robot to topple over. With the scope of this project being showcased at 
a competition, there leaves little room for error of weight design flaws in the system. 
Weight for every component then becomes a major consideration as well as where these 
components are placed throughout the proposed system. 
 
The equal distribution of weight does not only apply to the Electrical team’s components 
and where they are placed. Major consideration must be done as to how the Mechanical 
team decides to design the robot. If a certain part is their design is already equally 
distributed, the Electrical team may not be able to place a component where originally 
desired. One the other hand, if a certain part of their design is not equally distributed, 
there may need to be considerations done as to whether the Electrical team should 
change its original placement of a sensor or whether the Electrical team should move 
their part to compensate for the unequal distribution of weight. 
 
Overall, every part of the proposed system’s design has weight constraints that must be 
considered in order to build a successful system. Every piece must have its weight taken 
into consideration for an organized approach to solving the proposed system’s presented 
problem. Without such considerations being taken into play, the system could have 
mobility issues, could potentially topple over, or could suffer from lack of an equal 
distribution of weight. Weight is one of the crucial constraints that cannot be ignored 
throughout the course of this project, since it is one of the leading forces that affects 
development of the project design. 
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4.2.6. Economic and Time Constraints 
 
The battlebot will span a design and development time of about 30 weeks - from 
September, 2016 to April, 2017. This is calculated from the length of a typical school 
semester whereas this project will span two semesters inclusive a one month break in 
between.  
 
Within this timeframe, the battlebot will need to meet other time constraints, such as the 
competition between all involved teams and their battlebots as was the intent of the 
sponsor, Lockheed Martin. This competition is undated, but is assumed to be set for early 
April. It is also around this time that the project will need to be presented to the school 
panel for an assessment of the project design and performance and if it is worthy enough 
to pass the Senior Design course. 
 
Financially, the sponsor has limited project expenses to a maximum of $2,000 of which 
only $1,000 can be used for the final battlebot design. This leaves at least $1,000 towards 
component backups and testing. 
 

4.2.7. Safety Constraints 
 
Since the robot will be showcased at the competition and at the senior design fair following 
the project’s development, there are certain safety constraints the Red team members 
must abide by in order to ensure that the robot will not be harmful to individuals interacting 
with it. 
 
One safety issue that will be considered is the possibility of the robot firing at individuals 
as soon as the robot is turned on. In order to compensate for this issue, a safety constraint 
will be put in place that will allow the user to switch the robot between a “friendly” mode 
and an “attack” mode. The “friendly” mode will allow the user to manually navigate the 
robot without using the autonomous aiming, firing, and detecting features that will be 
present on the robot. This will ensure that when showcasing the robot, others will not be 
harmed. 
 
Another safety issue could be using hazardous materials in the design of the system. This 
can include using an ammunition other than nerf darts or balls, sharp objects present on 
the robot, or not doing proper checks for faulty wiring. It is important that all team members 
abide by these constraints to prevent harmful interaction with the user. This will ensure 
that the robot can be used appropriately for its intended purpose within the scope of this 
project. 
 
While choosing a laser rangefinder, it is important to keep in mind safety concerns that 
may arise. Some laser rangefinders can be damaging to the eyes, so it is important to 
make sure that these rangefinders are not pointed directly at someone’s face. However, 
the rangefinder chosen for this project, Lidar Lite 3, has a protective capping that may 
prevent such damage to one’s eyes. Therefore, individuals participating in the project do 
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not have to worry during testing and individuals that will be interacting with the final 
product will not be harmed. 
 
With the proposed system firing off many rounds of both nerf balls and nerf darts, it has 
been decided by Lockheed Martin that protective eyewear should be worn throughout the 
competition. All team members will need to utilize this protective eyewear in order to 
ensure safety among each group. This will prevent any stray nerf balls or darts from 
coming into contact with one’s eye, which may cause serious lifelong damage as a result. 
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5. Hardware Design 
 
Chapter 5 contains the procedure for the hardware design necessary to power and 
operate the robot. It is separated into different subsections that will cover the power, the 
microcontroller design, the sensors, the turret and various motor shields that will be used. 
 

5.1. Power 
 
Power is the most important factor of the robot. Without power, the robot will not be able 
to detect objects, navigate around the field or fire the Nerf-blasters. The entire robot is 
planned to be powered by a single 12V battery. Therefore, the power must be able to 
distribute to all the different components of the robot. There are motors that will need 
direct power from the battery while some sensors will be powered through the 
microcontrollers and Raspberry Pi. 
 
The following components that will need to be powered by the 12V is found in Table 5.1. 
Powering Components. This table shows the component that needs to be powered with 
power consumption specifications.  
 

Component Quantity  Current 
(A) 

Operating 
Voltage(V) 

Mostly 
Off/On 

Power(W) 

Microcontroller 2 0.0465 5 ON 0.466 

DC motors 4 1.1700 12 OFF 552 

Stepper Motors 2 1.7000 3 OFF 10.2 

Servo Motor 1 2.0000 6 OFF 12 

Nerf-blaster 2 - 6-9 OFF - 

Raspberry Pi 1 1.2000 5 ON 6 

Total Maximum Power 580.433  

Table 5.1: Powering components 
 
The total maximum power is if everything in the robot was turned on at once. There are 
no indications or planning where everything will need to run at once but this is for 
consideration how much battery power the robot will require to run a total of two 10 minute 
rounds. 
 
Since the battery is 12V and some components only require a lower voltage, there will be 
a use of voltage regulators to step down the voltage. The use of fuses and diodes will 
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also help in preventing overloading the components as well as preventing voltage 
feedback into the power supply. 
 
Figure 5.1 shows a diagram for the power flow that will be used to make sure each 
component can share and use each power safely and with stability. The 12V battery will 
be connected to each device so a high mAh rating will be used to ensure the system can 
stay running for longer than 20 to 30 minutes without charging.  
 

 
Figure 5.1: Power Flow diagram 

(Team Designed) 
 

5.2. Microcontrollers 
 
The microcontroller is the main central processing unit and will be able to communicate 
with other components as well as computing algorithms for the robot. The robot’s sensors, 
motors and Nerf-blasters will be controlled through two microcontroller boards. The 
Raspberry Pi 3 will be used for object detection and image processing.  For controlling 
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the motors and Nerf-blasters, an ATMega328p chip per microcontroller will be used. This 
section will go through the design and pinout of the ATMega328p chip as well as the 
design and pinout for the Raspberry Pi 3. 
 

5.2.1. ATMega328p 
 
The Atmel ATMEga328p is a 32-pin microcontroller with 23 I/O. There are 12 digital pins 
for input and output pins, which 6 of them are pulse-width modulation pins and 6 analog 
pins for input. Figure 5.2 contains the full pin out diagram for the Atmega168/328p 
microcontroller.  
 
 

 
Figure 5.2: ATmega168/328 pin mapping  

(Permission Granted by Arduino) 
 

 
In order to supply power to the chip, Pin 7 also known for VCC will be connected from the 
main power supply using a voltage regulator. To supply a clock crystal to the device, the 
clock crystal will be connected between pin 9 and 10 using 22pF capacitors for stability. 
A tactile switch will be connected to the reset pin, PC6. There will be LEDs connected to 
the power and to pin 19 for debugging and troubleshooting to make sure the chip is 
powered properly. Table 5.2. Contains the label value of each pin and what component 
will be connected to the respective pin. This project is using two microcontroller chips with 
the same pin out configuration. This table assigns each component to a pin of the chip 
and will distinguish which microcontroller will go with which component. 
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Component Number Microcontroller Number Pin Numbers 
(I/O, PWM) 

DC Motor 1 1 PD2, PD3,  

2 1 PD4, PD5 

3 1 PD7, PD6 

4 1 PB0, PB3 

Encoder 1 2 PD2 
PD4 

2 2 PD7 
PB08 

3 2 PB4 
PB5 

4 2 PB3 

Stepper Motor 1 1 PB2, PB5 

2 1 PB1, PB4 

Servo 1 2 PD3 

LIDAR Lite 1 2 PC5 

Nerf-blaster 1 2 PB5 

2 2 PB4 

Table 5.2: Pin assignment of each component 
 
The DC motors, stepper motor and servo motors all require a PWM pin and will not be 
directly connected to the microcontroller. Since each pin can only supply up to 500mA, 
the motor controllers will be used to drive each motor. The pinout to the microcontroller 
will still be the same, but the current and voltage will be supplied by the motor controllers. 
Lastly, for communication between other microcontrollers and for general programming, 
the ATMega328p will use a USB to serial breakout board and will receive power from the 
same VCC pin. The RX pin of the USB breakout board will connect to the TX pin of the 
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microcontroller. The TX pin of the breakout board will be connected to the RX pin of the 
microcontroller. All components are expected to share a common grounding pin. 
 

5.2.2. Raspberry Pi 3 Model B 
 
The Raspberry Pi 3 will be the main unit for the automated object detection and image 
processing. The hardware setup will be simple, since this project will be integrating this 
board to the designed PCB’s. The hardware required for the Raspberry PI to operate will 
be an SD card with a preprogrammed operating system, external power supply 
connection and USB cord for communication between the other two microcontrollers. The 
camera will be connected to the Raspberry Pi through USB. 
 
Figure 5.3 shows the full pinout for the Raspberry Pi 3 GPIO header is at full disposal in 
case more sensors or components will need to be added.  
 

 
Figure 5.3: GPIO pinout for Raspberry Pi 3 

(Request Pending from Element14) 
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5.3. Sensors 
 
The two types of sensors to be used for this project are the camera module and a range 
finder. These two sensors will be integrated into our chip since due to the time and money 
constraint, will not be designed by hand. This section explains how these two devices will 
be connected to the microprocessor as well as how each sensor can be mounted to the 
robot. 

5.3.1. Lidar-Lite Laser Rangefinder 

The Lidar-Lite Laser Rangefinder is simple to integrate to the robot system. To connect 
the Lidar-Lite to the ATMega328p chip, there is a 6 wire cable connector. Each pin of the 
cable connector contains a value. Table 5.3 shows the pin with the corresponding name 
value. 
 

Pin Name Connection 

1 Ground GND 

2 SDA PC5 

3 SCL PC4 

4 Mode - 

5 Power Enable - 

6 5V 5V Input 

Table 5.3: Pinout for LIDAR-Lite 
 

The pinout required for the LIDAR to communicate with the ATmega328p, pin 2 and 3 will 
be connected to two analog pins of the chip. Pins 1 and 6 will be connected to 5V power 
supply. The pins will be soldered into male jumper cables to avoid any of the wires from 
slipping out of the nodes of the microcontroller. The LIDAR will be mounted between the 
two Nerf-blasters to ensure precise range is captured. This way the Nerf-blasters will be 
able to fire the ammunition in the same direction. 

5.3.2. Logitech HD Pro Webcam 

The camera module will be mounted on the servo motor and will move independently of 
the turret and robot’s turning directions. This is so that the camera can have sight of the 
targets at all times during the competition. The camera utilizes a USB cord which will be 
connected to the Raspberry Pi with pre-installed drivers to support it. 
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5.4. Aiming and Transportation 
 
This section will be discussing the strategies of the movement of the robot and how the 
robot will be able to position the Nerf-blasters to fire upon targets. The robot will be 
utilizing the stepper motors to be able to move the Nerf-blasters in position to fire at 
targets, both moving and stationary. The four DC motors with the attached encoders will 
be implementing a tank drive. The following subsections go into details of how each will 
function. 

 
5.4.1. Turret 
 
The turret will be driven by the two stepper motors for lining the Nerf-blasters at targets. 
The Nerf-blasters will be placed parallel to one another facing the same direction. With 
the two stepper motors, the first stepper motor will be placed so it can rotate the Nerf-
blasters about the horizontal axis. The other stepper motor will be placed so it can elevate 
itself about the vertical axis. This allows a 2D frame for the Nerf-blasters to be aimed 
given the coordinates from the software. The Turret will be responsible for holding the 
extra ammunition that will be mounted on the Nerf-blasters in order for it to fire. 
 

5.4.2. Movement 
 
The robot will need to be able to move across the field to scope out for targets to fire 
upon. There are maybe ways to drive a robot using 4 DC motors. The simplest and 
efficient design is to allow the four DC motors to be paired into pairs and implement a 
tank drive. This is done by driving one pair of wheels at the same speed and rotation and 
driving the other pair at the same speed. When it comes down to turning or rotation, one 
pair of wheels will move together in a different speed while the other pair will drive in an 
alternative speed to create the rotation. Figures 5.4 - 5.5 shows a visual example of how 
the robot’s tank drive will work. 
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Figure 5.4: Forward and Reverse Drive 

(Team Designed) 
 

 
Figure 5.5: Left and Right Drive 

(Team Designed) 
 

5.5. Nerf-Blasters  
 
The final step in the algorithm are the Nerf-blasters firing at stationary and moving targets. 
The two Nerf-blasters of choice will be stripped from its original case to properly mount 
onto the chassis of the robot. All the battery packs will be removed and connected to the 
main power supply. Each Nerf-blaster is operated with a pull of a mechanical trigger. 
Since these Nerf-blasters will need to be fired automatically, they will be taken apart and 
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examined for the main switches that turn on the power to the blaster to fire nerf darts. 
Figure 5.6 shows the insides of a Nerf-blaster revealing all the mechanical parts and 
electrical wiring.  
 
A Nerf-blaster consists of many parts both mechanical and electrical. If the user of the 
Nerf-blaster holds down the trigger of the blaster, the blaster will connect the circuit that 
allows the battery to connect to the motor and shoot the darts in multiple rounds until the 
magazine runs out of ammo. Therefore, the plan is to open up each Nerf-gun and discover 
what turns on the blaster and how to modify that to do so digitally.  
 
Most Nerf-blasters contain a motor that drives the Nerf-darts through the chamber of the 
blaster and reloads the next dart into the barrel. If the mechanical trigger is pulled, the 
motors will activate by using the power of the battery to allow the mechanism to flow 
through.  
 
 

 
Figure 5.6: Inside of a Nerf-blaster 

(Team Supplied) 
 

Figure 5.7 shows a switch that sends the voltage to the firing mechanism to release the 
dart. This blaster has several mechanical switches that must closed for the blaster to fire 
the darts. The final switch that completes the full circuit is manually set on through the 
trigger of the Nerf-blaster. Since the robot must be able to also fire the Nerf-darts 
autonomously, the mechanical switch will need to be connected an I/O pin on the 
ATMega328p and will be programmed to fire. Although in order to achieve this feat, a 
MOSFET switching device will need to be implemented to turn on the Nerf-blaster and 
fire the darts. 
 



 

79 
 

 
Figure 5.7: Mechanical switch of Nerf-blaster 

(Team Supplied) 
 
This mechanical switch in Figure 5.7 will be removed and replaced to operate digitally. 
The most common use of a digital switch in consideration are MOSFETs, which use 
voltage to control the voltage of another source (an example circuit is seen in Figure 5.8). 
The MOSFET gate source will be connected to a digital pin of the ATmega328p 
microcontroller and will allow the robot to remotely and automatically fire the Nerf-blaster. 
 

 
Figure 5.8: MOSFET as a switch 

(Permission Requested from Electronic Tutorials) 
 

This will allow easy programming for the Nerf-blasters to be fired from a digital voltage 
input. If the I/O pin is set to off, the Nerf-blaster will not be able to complete its circuit. As 
the MOSFET receives signal from the I/O pin, this will allow the switch to close, powering 
on the Nerf-blaster. The way the only way to turn off the Nerf-blaster from firing is if the 
I/O pin no longer sends a signal. 
 
Another design idea for firing the Nerf-blasters digitally would be the use of a relay switch 
circuit. These devices are electromechanical and use an electromagnet that can operate 
a switch to open and close physically. It would only take a small amount of power to 
operate the relay coil and could be used to control things such as motors, lamps or AC 
circuits.  
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The most common type of relay switch driven by a NPN transistor switch. Like most 
transistors, if there is no current supplied to the transistor, the circuit is an open switch 
and will not connect the power. Once the current and voltage is supplied to the transistor, 
the circuit will connect causing a flowing current from the battery to the component needed 
for powering.  
 
With this device, it will be possible to controller the Nerf-blasters with a transistor and 
allow the output pins of the microcontroller to turn on and off the Nerf-blasters. The 
microcontroller will be programmed through the code and will be able to digitally connect 
the power of the Nerf-blasters to the firing mechanisms. 

5.6. Motor Encoders 
  
Each DC motor used to drive the robot are equipped with built in encoders to allow the 
movement to be tracked as the robot navigates around the playing field. To properly 
connect these encoders to the microcontrollers, each one uses a 4-pin am-2993 
connector. These 4 pins are mapped out in Table 5.4 to be VCC, GND, Ch.5, Ch.6. The 
VCC and GND are for power while Ch.5 and Ch.6 will be connected to the microcontroller. 
Eight of these pins will be needed.  
 

Pin Function 

VCC Power 

GND Grounding 

Ch.5 Encoder I/O 

Ch.6 Encoder I/O 

Table 5.4: Pinout table for Encoders 
 

6. Software Design 
 
The following Software Design section discusses the input and output, or dataflow, of the 
selected processes and components for each subsystem. This section also discusses 
how each subsystem communicates to come together as a whole battlebot system. 
 

6.1. High Level Software System Architecture 
 
In Figure 6.1, a software breakdown of the system components is visualized at a high 
level. This system is broken down into the subsystems: object detection and firing, 
panning and tilting control, navigating the robot, input and output data from the user, and 
processing via the microprocessor and microcontroller.  
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Discussion of these subsystems will not be as straightforward as they are illustrated. 
There are several data connections that will be webbing back and forth as certain 
components may have roles in multiple subsystems. For example, wireless remote 
control input from a user device, such as a laptop, will need to go through the processing 
subsystem before it reaches the manual navigation subsystem wherein the movement 
feedback from the encoders will be sent back to the processing subsystem for analysis. 
 

 
Figure 6.1: High Level Software Diagram 

(Team Designed) 
 

6.1.1. Modes of Operation 
 
To prevent the battlebot from attempting to target allies (by facial detection) immediately 
after being placed on the field and powered on or during repairs, two modes of operation 
will be configured - interchangeable by the push of a button - Targeting Mode and Neutral 
Mode.  
 
Therefore, the high level architecture model found above in Figure 6.1 is true only when 
the battlebot is in Targeting Mode. This targeting mode is to be the primary mode of 
operation, where all aspects of the robot are fully functional. 
 
The other mode of operation is to invoke a more neutral functionality of the robot. Only 
some subsystems, mainly the navigational system, of the robot will be running during 
startups, repairs, or other reasons, perhaps for defensive tactics to conserve power. 
Figure 6.2 presents the subsystems that will be active in Neutral Mode.  
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Figure 6.2: High Level Software Diagram in Neutral Mode 

(Team Designed) 
 

6.2. Software Development Life-Cycle 
 
After much consideration for what type of Software Development Cycle is best for this 
project, it was decided that the Agile Development Life Cycle will be used. As opposed to 
traditional software development approaches, the Agile method consists of multiple 
iterations of analysis, design, development, and testing. Initial planning is kept generally 
high-level in order to allow for more iterations of the Life Cycle process. 
  
Figure 6.3 below highlights the key stages of the Agile Method. Each iteration could last 
anywhere from a week to a few weeks at a time. These iterations can occur any number 
of N times, which allows for constant updating of the system until the final product must 
be delivered. 

  
Figure 6.3: Agile Development Life Cycle 

(Team Designed) 
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The reason the Agile method was chosen as the best software approach for this project 
is because the Electrical team will be working with two other groups; the Computer 
Science team and the Mechanical team. The Agile method allows the Electrical team to 
account for necessary changes that may occur throughout the course of this process. It 
also allows for constant up to date information between all group members in each team 
discipline. 
  
A great example as to why the Agile method has been chosen for this project involves all 
members from each discipline. To explain, if the Mechanical team decides to change a 
specific part in their design that may affect the way the Electrical team chooses to program 
the Nerf-blasters, it will be imperative to make necessary changes to the proposed system 
as quickly as possible. This change may also affect the Computer Science team’s 
algorithm which indeed can change the system design immensely. By constantly 
providing new software to ensure the system is constantly up to date for all team members 
is the best approach for this given project. 
 

6.3. Sensor Processor 
 
This section, Sensor Processing, will detail the setup that is required for the sensors. To 
explain in further detail, the data flow of the sensors readings is graphically displayed in 
Figure 6.4. 
  
The Logitech C920 webcam will be plugged directly to the USB port of the Raspberry Pi. 
The C920 is a plug-and-play device, therefore it will automatically be recognized by the 
Raspberry Pi, assuming the operating system installed is Raspbian Jessie. The camera 
will be available to any Python code that needs to access it. 
  
The Logitech C920 is a 15-megapixel webcam that is capable of recording video at 1080p. 
If this resolution proves to be too much for the system to process in real-time, we may 
need to downgrade it. Lowering the resolution can be done different ways. One way it can 
be done is through the terminal. Installing the fswebcam package on the Raspberry Pi 
allows us to access the device driver and directly specify the resolution. Another way of 
doing is through the OpenCV Python function VideoCapture. You create a “VideoCapture” 
object to receive video from the default camera. Then you can call the class method “Set” 
on the VideoCapture object with two arguments. The first argument is a flag to set the 
horizontal frame size with CV_CAP_PROP_FRAME_WIDTH, or vertical frame size with 
CV_CAP_PROP_FRAME_HEIGHT. Then the second argument takes an integer value 
as the resolution size. 
  
Once the camera frames are being received they will each be analyzed by the 
autonomous target detection pipeline. With the camera feed alone, the system will not 
know its position in the field nor the distance to the objects detected. Therefore, the range 
finders and encoders must be frequently polled too. 
  
The range finder we will use is the Lidar Lite v3. It will either be read as input directly by 
the Raspberry Pi or indirectly with the Arduino playing the middle role. The Lidar Lite can 
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be interfaced via Pulse Width Modulation (PWM) or I2C interface. Using the Lidar Lite v3 
Arduino library we can call the Lidar with a line of code. If the LiDAR is interfaced via 
PWM, then we can call GetDistancePWM() to read its distance measurement. If instead 
it is interfaced via I2C, then we simply change the call to GetDistanceI2c(). 
  
The last sensors we will use are the encoders embedded on the wheels. To read the 
encoders we will simply need to ensure the pins they are connected to are set as inputs. 
To do this we can use the Arduino function pinMode(). With the encoders pins set to 
inputs we can then use the digitalRead() function to take measurements.  
 

 
Figure 6.4 Data Flow of Sensors 

(Team Designed) 
 

6.4. Autonomous Detection 
 
It has been decided that the autonomous detection for this project will be carried out 
based on concepts of computer vision. Although the Electrical team will not be 
responsible for the autonomous detection of the proposed system, the Computer Science 
team’s autonomous detection drastically impacts the programming that needs to be 
carried out by the Electrical team regarding input and output from different devices and 
the moving parts of the robot. This section will briefly discuss the basic concepts that will 
be carried out by the Computer Science team as well as how these aspects will affect the 
Electrical team’s coding plan. 
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The first concept that must be considered regarding the autonomous detection of the 
proposed system is the different aspects that will be present on the given field. An 
important aspect of the field to remember is that there will be both stationary and moving 
targets that must be autonomously targeted. Another aspect of the course will be the 
obstacles that must be avoided when shooting at a target. Since not all information of the 
course has been provided, the solution to the proposed system’s problem becomes more 
intricate. In order to solve the proposed system’s problem of being able to detect, aim, 
and fire at stationary targets and moving enemies, there will be multiple autonomous 
detection algorithms combined. The main algorithms that will be used to program the 
autonomous detection of the robot will deal with object recognition, motion detection, and 
facial detection. 
  
The Computer Science team plans to use object recognition as a means to recognize 
certain features from the enemy robot’s design and use these features in order to identify 
that object. Based off a database that already contains data, this data will be matched to 
the features being obtained from the camera. The information provided by the camera 
sensor will be programmed to match with the information provided in the database. If the 
objects are similar, the Nerf-blaster will be able to recognize the object as a “friend” or an 
“enemy”. 
  
Another key development in the programming of the robot’s autonomous capabilities will 
be motion detection. Motion detection will allow the robot to find any object in motion 
within the frame of the camera. This will be a major aspect of the system’s performance, 
since all the objects that will be in motion during the competition will be enemies. As the 
system identifies whether an object is in motion, it will be able to label an object an enemy 
automatically if that object is found to be in motion. 
  
The final factor that will play an important role in the development of the autonomous 
capabilities of the proposed system its ability to use facial detection. Facial detection will 
be a major aspect in the design of the robot because information has been released that 
the stationary targets will have faces on them. With the robot being able to detect faces, 
the robot can automatically label this object as a stationary “enemy”. Thus, the Computer 
Science team will ensure that facial detection is a crucial aspect in their programming 
design of the proposed system. 
  
The current plan for programming autonomous detection for the proposed system has a 
great impact the Electrical team’s decisions of the robot’s design and functionality. The 
image processing will be done through the Raspberry Pi, as the camera will be directly 
connected to the Pi. The Electrical team will be in charge of sending the output from the 
camera to the Raspberry Pi. The Electrical team will also be in charge of sending input to 
the motor controlling the camera so the camera will pan. This will allow the proposed 
system to search for these objects that will be recognized by the Computer Science 
team’s algorithm. 
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6.5. Manual Navigation 
 
As mentioned in section 3.15, the programming regarding manual navigation of the 
proposed system relies heavily on how the data from the motors will be sent to the 
controller. It has been decided that a laptop will be used as the main source of controlling 
the navigation of the robot. As a secondary source, a separate controller, such as an 
Xbox controller, may also be programmed if it is possible during the time given to 
complete this project. Both controls will be operated wirelessly in order to complete a 
requirement given by the competition and to also allow for optimal use of the robot in 
battle. 
 
Since different means of how the robot can wirelessly communicate with the laptop have 
been explored in section 3.15, it has been decided that the robot will preferably connect 
to a local network via a router in order to establish a connection with the laptop. This 
proves to be the most optimal option, since this allows for a sufficient range as the robot 
will be in the same room as the router and laptop during the course of the competition. 
This will also provide a reliable way of transmitting the live video feed to the laptop while 
being able to manually control the robot at the same time. 
 
A program will be developed by the Computer Science team to house both the controls 
for the manual navigation and the video stream for the robot. The Electrical team will 
provide adequate connection from the motors to the PCB, which will house an Arduino 
chip used for processing the data for the manual navigation. Once connection has been 
established, the Electrical team will program the Arduino to control the motors.  
 
The Arduino will send all the data to the Raspberry Pi in order to establish connection to 
the laptop and allow the Computer Science team to use a python program to interface 
with the data. If preferred, the Arduino may instead establish its own connection to the 
laptop if proven to be a better strategy for the proposed system. Finally, the Electrical 
team will be able to control the robot’s movements wirelessly via the arrow keys or the 
WASD keys on the laptop for intuitive controls. 
 
The first consideration for establishing manual navigation is the libraries that may need 
to be imported when transferring the data from the Arduino to the Raspberry Pi. It is likely 
that there will be a serial communication between the Raspberry Pi and the Arduino by 
simply connecting the two via a USB cable. One way to send the data from the Arduino 
to the Raspberry Pi is by simply importing the serial library to both the Arduino and the 
Raspberry Pi to assist in the transfer of the data. By calling the serial library and reading 
each line of data, the code written to the Arduino for the manual navigation can be 
transferred to the Raspberry Pi which will connect wirelessly to the laptop using a local 
network connection. 
 
Generally, four main functions will be established to control the direction of the robot. 
These functions are as follows below: 
  

● void forward();  
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● void backward();  
● void left (); 
● void right (); 

 
As one would assume, void forward() will provide forward movement of the proposed 
system, void backward() will provide backwards movement, void left() will provide 
movement to the left, and void right() will provide movement to the right. Other functions 
to consider could be a void setup() function or a void stop() function that will provide a 
general means of initializing certain devices required for manual navigation and allow the 
proposed system a safe and effective way to stop during the competition. The diagram in 
Figure 6.5 explains how these functions will be implemented in the proposed system. 
 

 
Figure 6.5: Manual Navigation breakdown 

(Team Designed) 
 
Defining output pins for the motors in the code will be extremely important to allow for 
successful manual navigation. These defined pins will give the motors the commands 
written in the functions mentioned above, allowing for the motors to be able to respond 
accordingly. Not only do the pins for the motors themselves need to be defined, but the 
pins for the motor drivers will need to be connected to the PCB for a smooth transition to 
the motors.  
 

6.6. Nerf-Blaster 
 
The programming of the Nerf-blaster and its movements are crucial to the functionality of 
the proposed system. The Computer Science team will be in charge of programming the 
Nerf-blaster to point and shoot in a specified direction autonomously. The Electrical team 
will oversee programming the motors to pan and tilt the Nerf-blaster as well as 
programming the Nerf-blaster to fire. This section will highlight the Electrical team’s 
software plan for controlling the Nerf-blaster’s direction and the Nerf-blaster’s ability to 
fire. 
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Since there will be two Nerf-blasters for the proposed system, each blaster will be 
programmed accordingly to fire independently of one another. Even though the two Nerf-
blasters will be able to fire at different times, the same motors will control the position of 
each blaster; one motor to pan and one motor to tilt. The two Nerf-blasters will be 
programmed to pan and tilt simultaneously to aim at a specified target. It has not been 
decided when each Nerf-blaster will fire. One idea that may be implemented is allowing 
the nerf dart blaster to fire at close range objects, since its accuracy is less than that of 
the nerf balls. This would allow the nerf balls to be solely used for long range objects for 
a potentially more accurate shot. These range values will be determined by the range 
finder, which will be positioned between both Nerf-blasters. 
  
As discussed in section 3.5, both Nerf-blasters’ mechanical switches will need to be 
connected as I/O pins to the ATMega328p. Therefore, all programming will need to 
interface through the Arduino in order to move the motors and fire the guns.   
  
As the Electrical team breaks down the plan for coding the Nerf-blaster to pan, tilt, and 
fire seamlessly, the first thing that needs to be addressed is the specified range that a 
Nerf-blaster is able to pan or tilt. The general idea is to program the robot’s pan range to 
be no larger than 180 degrees. This has been decided since it is ideal for the guns to be 
pointed towards the enemy at all times. Since it is known that the enemy will not appear 
behind us, the general field of view only needs to be at 180 degrees maximum. This will 
be a good starting point for further testing. As testing continues, this value can be 
improved and reduced accordingly.  
 
Just as the range that the Nerf-blaster will be able to pan must be decided, so must the 
tilt range. The value for the tilt should not exceed 90 degrees. If the Nerf-blaster is allowed 
to tilt too high or low, it will completely miss its target as it will be pointed towards the 
ceiling or ground. Again, the exact value determined to be the most suitable for the 
proposed system can only be decided after further testing and implementation of the 
design. A complete breakdown all components that will be necessary in order to program 
the Nerf-blaster’s pan and tilt capabilities are highlighted below in Figure 6.6: 
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Figure 6.6: Breakdown of Components for Nerf-Blaster’s Pan and Tilt 

(Team Designed) 
 

Another factor that must be considered regarding the movement of the Nerf-blaster deals 
with how fast to set the incrementation of degrees for both the pan and the tilt. This will 
be a constantly changing value determined by the speed of the moving target. This value 
can also be affected by the maximum speed that the motors will allow the Nerf-blaster to 
move. 
  
It has also been determined that the camera, range finder, and Nerf-blasters will be 
automatically panning until a target has been found. This code that will allow for both Nerf-
blasters to continuously move from left to right and must be developed in order to give 
the Computer Science team the opportunity to lock onto targets that are detected through 
the sensors. Once the robot is in “attack” mode, the panning will continue until a target is 
acquired. 
  
One key functionality that may be utilized within the programming of the Nerf-blaster is 
serial communication between the robot and the laptop for testing purposes. Extra code 
may be written during this testing phase to make sure that the guns are working 
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accordingly before the Wi-Fi signal is setup between the robot and the laptop. Adding this 
functionality may lead to less errors and less startup time between tests for better results. 
  

6.7. ATmega328p 
 
The ATmega328p chip will be relied on heavily because of the sheer amount of 

component connections that will be made to it. This chip will be connected to the Nerf-

blaster firing mechanisms, range detection sensor, processing unit, servo motor 

controller, stepper motor controller, and DC motor controllers, which control the gear 

motors, that spin the wheels, and their respective encoders. Data will be coming in and 

out of quite a few components at once. 

  

Video imaging from the Logitech HD Pro Webcam C920, the vision sensor (otherwise 

known as a camera), will be processing on the Raspberry Pi 3 Model B using object and 

facial detection algorithms. As these objects and/or faces are detected, the coordinates 

(relative to the center of the camera and where the object was detected) and a request to 

fire will be sent out to the ATmega. 

  

When the request and its positioning data is picked up, the ATmega will then send out 

signals to the Servo Motor Controller and Stepper Motor Controller, which control the X 

and Y positioning of the firing system, to redirect the Nerf-blasters, camera, and the 

rangefinder towards the target’s position. 

  

The LIDAR-Lite 3, or the rangefinder, will be continuously pinging distance values to the 

ATmega which in turn will be sending these values to the Raspberry Pi processing unit. 

The Raspberry Pi will continue to wait until the rangefinder signals back to it whether the 

target is within firing distance or not. If the target is detected and within firing distance, the 

Raspberry Pi will send out a message to the ATmega chip to signal the firing mechanisms 

on the Nerf-blasters to fire. If the target is not within distance, the Raspberry Pi will have 

a couple options depending on the algorithm that will be implemented by the Computer 

Science team. For instance, if the target is not within firing range, the Raspberry Pi may 

message the ATmega to reposition the stepper and servo motors to a default position, 

where the battlebot will continue to scan and detect objects. 

 

While a textual explanation of this process might imply that the process could take several 

minutes, the entire target detection and firing process should occur in about three 

seconds at its slowest point (where the panning and tilting motors would go from leftmost 

to rightmost). Most of this time will be consumed while waiting for the stepper and servo 

motors to turn towards the target. This target detection and firing process by the ATmega, 

in junction with other system data, is mapped in Figure 6.7. 
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Figure 6.7: ATmega328p response to firing subsystem seen as a flowchart 

(Team Designed) 

  

Navigating the robot, by means of controlling the gear motors, will also be the 
responsibility of the ATmega chip. When a user sends navigational input via a wireless 
remote control, be it an actual remote control or the keyboard of a laptop, it is received 
by the Raspberry Pi, however not physically processed by it. The Raspberry Pi delivers 
the input to the ATmega chip. It is then that the corresponding Motor Controllers (turning 
left or right and going forward or backward by any combination) receive the input and turn 
the gear motors as requested. 
 
When the gear motors turn, the encoders that are built into the gear motors send feedback 
to the ATmega. The ATmega then delivers this feedback to the Raspberry Pi for data 
analysis. This feedback is information on how far the wheels of the robot have turned, 
which may prove useful for tracking distance traveled by the robot on a size restricted 
course. Movement restrictions could be set into place, such as prohibiting the robot from 
navigating further forwards if it means it would be crossing the course keep out area 
(crossing would lose points). 
 
The ATmega chip, in short, will be acting more as a messenger than a data processor, 
even though it is fully capable of doing so (albeit limited in comparison to the Raspberry 
Pi). The ATmega will be taking input and output and delivering that data to the appropriate 
receiver. 
 
Programmatically, the input and output data signals of the attached components will be 
configured and allocated by Electrical and Computer Engineering team in order for the 
Computer Science team to use for their algorithm design and processing. 
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6.8. Raspberry Pi Communication 
 
The Raspberry Pi will be required to communicate with the custom microcontroller board 
in order to receive input from the LIDAR and encoders, and to output or actuate the dc 
motors of the wheels the stepper motors of the Nerf-blaster aiming mechanism and the 
servo rotating the camera. Without a form of communication, the two computers are 
independent of each other and the robot will not complete its function. 
 
There are different ways of establishing two-way communication between the Raspberry 
Pi and the microcontroller. By giving the microcontroller board a serial-to-USB port we 
can establish Serial communication. The benefits of choosing Arduino based 
microcontrollers are seen here as the Arduino Serial Library provides the programming 
functions to do this. Tables 6.1 - 6.6 are the functions available to initiate communication, 
read, and write data serially. 
 

Function begin() 

Description Sets the data rate in bits per second (baud) for serial data 
transmission. 

Syntax Serial.begin(speed, config) 

Parameters speed: in bits per second (baud) - long  
config: sets data, parity, and stop bits. 

Table 6.1: Arduino Serial Library begin 

 

Function end() 

Description Disables serial communication.  

Syntax Serial.end() 

Table 6.2: Arduino Serial Library end 

 

Function find() 

Description Reads data from the serial buffer until the target string of given 
length is found. The function returns true if target string is found, 
false if it times out. 

Syntax Serial.find(target) 

Parameters target : the string to search for (char) 

Returns Boolean 

Table 6.3: Arduino Serial Library find 
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Function findUntil() 

Description Reads data from the serial buffer until a target string of given 
length or terminator string is found. The function returns true if 
the target string is found, false if it times out. 

Syntax Serial.findUntil(target, terminal) 

Parameters target : the string to search for (char)  
terminal : the terminal string in the search (char) 

Returns  Boolean 

Table 6.4: Arduino Serial Library findUntil 

 

Function read() 

Description Reads incoming serial data. 

Syntax Serial.read() 

Returns The first byte of incoming serial data available (or -1 if no data is 
available) - int 

Table 6.5: Arduino Serial Library read 

 

Function write() 

Description Writes binary data to the serial port. This data is sent as a byte or 
series of bytes; to send the characters representing the digits of a 
number use the print() function instead. 

Syntax Serial.write(val)  
Serial.write(str)  
Serial.write(buf, len) 

Parameters val: a value to send as a single byte 
str: a string to send as a series of bytes  
buf: an array to send as a series of bytes 
len: the length of the buffer 

Return byte write() will return the number of bytes written, though 
reading that number is optional 

Table 6.6: Arduino Serial Library write 
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6.9. PID Controller- Arduino Library 

 

In order to have a system of motors consistently functioning precisely as we desire, we 

will need to implement a PID Controller. The PID controller will help determine the 

parameters we need to continually adjust as we analyze our inputs or digital commands, 

and the corresponding motor output or physical movement. Tables 6.7 to 6.10 show the 

functions made available by the Arduino PID Library we will use.  

 

Function PID() 

Description Creates a PID controller linked to the specified Input, Output, 
and Setpoint. The PID algorithm is in parallel form. 

Syntax PID(&Input, &Output, &Setpoint, Kp, Ki, Kd, Direction) 

Parameters Input: The variable we're trying to control (double)  
Output: The variable that will be adjusted by the pid (double) 
Setpoint: The value we want to Input to maintain (double)  
Kp, Ki, Kd: Tuning Parameters. these affect how the pid will 
change the output. (double>=0)  
Direction: Either DIRECT or REVERSE. determines which 
direction the output will move when faced with a given error. 
DIRECT is most common. 

Table 6.7: Arduino PID Library - PID 

 

Function Compute() 

Description Contains the pid algorithm. It should be called once every loop(). 
Most of the time it will just return without doing anything. At a 
frequency specified by SetSampleTime it will calculate a new 
Output. 

Syntax Compute() 

Parameters True: when the output is computed  
False: when nothing has been done 

Table 6.8: Arduino PID Library - Computer 

 

 

 

 

 



 

95 
 

Function SetOutputLimits() 

Description The PID controller is designed to vary its output within a given 
range. By default this range is 0-255: the arduino PWM range. 

Syntax SetOutputLimits(min, max) 

Parameters min: Low end of the range. must be < max (double)  
max: High end of the range. must be > min (double) 

Table 6.9: Arduino PID Library - SetOutputLimits 

 

Function SetTunings() 

Description Tuning parameters (or "Tunings") dictate the dynamic behavior 
of the PID. Will it oscillate or not? Will it be fast or slow? An initial 
set of Tunings is specified when the PID is created. For most 
users this will be enough. There are times however, tunings 
need to be changed during run-time. At those times this function 
can be called. 

Syntax SetTunings(Kp, Ki, Kd) 

Parameters Kp: Determines how aggressively the PID reacts to the current 
amount of error (Proportional) (double >=0)  
Ki: Determines how aggressively the PID reacts to error over 
time (Integral) (double>=0)  
Kd: Determines how aggressively the PID reacts to the change 
in error (Derivative) (double>=0) 

Table 6.10: Arduino PID Library - SetTunings 

 

7. Prototype Construction 
 
This section is to show the process of design and assembling for the PCB of this project. 
There also explains some manufacturing company comparisons with displayed 
schematics of the PCB designs. 
 

7.1. PCB Vendor and Assembly 
 
As a requirement for this project, a printed circuit board must be designed, assembled 
and manufactured. This portion of the project will be completed through companies that 
can specialize in this area. With several companies in the market, this section briefly 
discusses the three companies of choice and their services offered. 
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One of the company that offers this service is Elecrow. They offer customized PCB 
manufacturing at a reasonable price. To acquire a PCB from Elecrow, Gerber files will be 
emailed to a specific project manager along with a bill of material and any PCB 
specifications and quantity size. Elecrow will bill the service based on the fabrication, the 
level of difficulty for soldering, the list of components needed and how many PCB’s that 
will need to be made. The time claimed to finish PCB assembly and manufacturing will 
only take from 3 to 5 days. 
 
Another company that can offer PCB assembly is Expresspcb. They offer services to a 
wide range of the different types of PCBs. The least expensive option is the Miniboard 
standard. These boards are a 2 layer pcb with no solder mask or silkscreen layers. They 
have a fixed size of 3.8 x 2.5 inches. They offer free software for schematic and PCB 
mapping. The files will be emailed to the company and they will send a quote of 
manufacturing and shipping costs and will send the boards.  
 
Advanced circuits provides discounts and sponsorships for students seeking to use 
printed circuit boards for their projects. With $33 for a PCB with a 2 layer full specified, 
small quantity, special. This company offers a turn time of same day to 5 days and can 
print up to 10,000 pcbs per order. The material they used is FR-4 which is grade 
designation to glass-reinforced laminate sheets.  
 
The plan for assembly is to order components for the schematics drawn, test and verify it 
is a working circuit on the breadboard. Then once its verified and working on the 
breadboard, there will be modifications towards the schematic before emailing the 
manufacturers to have the boards printed. 
 

7.2. Schematics 
 
Section 7.2 contains schematics for the microcontrollers that will be used in this project. 
The program used to design these schematics is the Eagle PCB Design version 7.7.0.  
The Figure 7.1 contains all the components and chips needed to power one 
microcontroller. This circuit is straightforward and contains power regulation circuit so the 
MCU will not overload with header pins that will be used to connect the different types of 
components needed for the robot.  
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Figure 7.1: Microcontroller Schematic 

(Team Designed) 
 
Figure 7.2 is the proposed PCB layout design. All the headers will be lined up for easy 
access of jumper wires. Due to space constraint to the robot, this PCB design is intended 
to be no bigger than 68.6x53.44 mm.  
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Figure 7.2: PCB Layout 

(Team Designed) 
 

This project will be required to use two MCU’s therefore two PCBs will be constructed. In 
Figure 7.3, contains a full design of how the two MCUs will interact with the different 
components of the project. Figure 7.3 will not be implemented into a PCB, but rather will 
serve the purpose of a guideline when it comes to testing and integrating all of the 
components. 
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Figure 7.3: Ideal full schematic design of robot 

(Team Designed) 
 

7.3. Coding Plan 
 
In order to successfully implement the proposed system, a coding plan must be 
established in order to prioritize the work that must be accomplished. The following outline 
below highlights every task that must be accomplished as well as the order in which these 
tasks should be executed.  
 
I. ATMega328p communication with Raspberry Pi: 

a. Establishing communication between the Raspberry Pi and the ATMega328p 
is essential for the entire implementation of the proposed system. 

b. Every component in the proposed system will either be connected to the 
ATMega328p or the Raspberry Pi. 

c. In order to transmit data wirelessly, the Raspberry Pi will be used; therefore, 
data from the ATMega328p will be transferred to the Pi so it can reach the 
laptop. (ex. Manual Navigation data) 

II. Raspberry Pi receiving output from from the Logitech HD Pro Webcam 
a. This is essential to allow for the Computer Science team to start on their 

algorithm for autonomous detection. 
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III. ATMega328p receiving output from the Lidar Lite 3 Rangefinder 
a. Again, this is essential so that the Computer Science team is able to start with 

their contribution to the project 
IV. Programming Stepper Motors to rotate Nerf-Blasters, Camera, and Rangefinder 

a. This is an important part of the overall development of the proposed system’s 
design.  

b. This step is key to complete as soon as the connection has been established 
with the camera and rangefinder, since once an object has been detected, the 
system will aim and fire at that object. 

V. Programming the Nerf-Blasters to fire with a button from the laptop 
a. This will immensely assist with the Computer Science team’s plan to 

eventually autonomously aim and fire with the system. 
b. This feature is essential for further testing with the proposed system. 

VI. Programming the DC Motors to rotate appropriately for manual navigation of the 
robot 

a. Manual navigation is a key feature that will be very important to the overall 
design of the proposed system. 

b. However, manual navigation will not be possible until we can obtain the 
necessary components from the Mechanical Engineering team. 

c. Although testing and preliminary models can be designed to practice 
establishing manual navigation, it is not as pressing as other features that 
must be implemented first. 
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8. Prototype Testing 
 
This chapter covers all the prototype testing for both hardware and software designs that 
will be taken place with strategic procedures to ensure all components are connected 
properly and integrated correctly. Testing will be an essential part of the overall 
development life cycle of the system.  
 
If either a software or a hardware design component does not pass a certain test, it will 
be tested again in order to figure out the possible problem. If a certain hardware 
component seems to be malfunctioning, a new component will be ordered in its place. If 
the component is not working due to faulty wiring, the team will have to redevelop their 
current design. If the component is not responding due to a software error, the team will 
have to rethink their current software design for a better solution. 
 

8.1. Hardware Testing 
  
This section focuses on hardware testing environments and planned procedures to 
ensure that each component is connected and working properly for the project. Hardware 
testing will be carried out accordingly once all parts arrive from their respective 
manufacturers. It is important that the hardware testing is carried out before software 
testing, since all software designs will be based on the assumption that the hardware is 
operating properly. Each section will contain a table labeling the type of testing with an 
objective and will then explain the practical procedure and the expected result from the 
testing. 
  

8.1.1. Testing Environment 
  
The competition is set to be indoors away from any outside elements, therefore all testing 
will be indoors in a controlled environment. The component and PCB testing will be 
conducted in labs with desktop computers. This will ensure that all necessary materials 
for PCB testing will be provided and easily accessible by team members. Once the robot 
is assembled, the field testing will be conducted in a field similar to the dimensions used 
in Figure 2.1. 
 
The testing environment will be constructed duct-tape or rope to simulate the boundaries 
of the field. The testing environment will also have boxed to simulate obstacles that will 
be available during the competition. These obstacles must be present in the test 
environment, since the Computer Science team will need to avoid these obstacles within 
their algorithm. The testing environment will also have simulated targets, such as a box 
with a face on it for one of the stationary targets. The team will have a robot within the 
testing environment that will simulate an enemy for target practice as well. Someone will 
also be labeled as the medic to ensure that all methods of scoring are properly tested. 
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8.1.2. Camera 
  
This section focuses on testing the camera through its hardware interactions to make 
sure that they are working seamlessly. The camera testing is an essential step towards a 
complete hardware design. Camera integration will allow us to successfully modify the 
system by being able to test whether the camera is properly connected. The camera will 
have to be connected to the Raspberry Pi in order to allow the Computer Science team 
to utilize their computer vision algorithms. Ultimately, the Raspberry Pi will be responsible 
for the image processing from data received by the camera. See Table 8.1 for details. 
 

Test Objective To test the camera module to turn on and show video stream of 

surroundings. 

Equipment 1.    Raspberry Pi 3 

2.    Logitech Webcam 

3.    Power supply 

4.    Desktop Computer 

Preparation 1.    Connect camera to Raspberry Pi. 

2.    Load program onto Raspberry Pi. 

3.    Open video viewer for camera. 

Procedure 1.    Check for all component connections. 

2.    Open video feed from computer 

Expected Result The video feed should show the camera’s view. 

Table 8.1: Camera Testing module 
  

8.1.3. Motors 
  
For testing the motors, it will be important that each motor is receiving power and running 
properly. DC motors will conduct a test through the designed PCB to make sure it is 
getting enough power. The stepper motors will be tested to ensure that they are rotating 
properly and connected securely to the PCB. Both the DC motors and the stepper motors 
will be connected to the power supply. It is essential that the DC motors tested thoroughly, 
since they will be in charge of manual navigation. However, it is also important that the 
stepper Motors are tested, since they will be in charge of the nerf-blaster’s ability to pan 
and tilt.  
 
Additionally, the connections between the DC motors and the DC motor controller, as well 
as the Motor Controller for the stepper and servo motors will need to be tested. 
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8.1.3.1. DC Motors 
  
This is the testing module (seen in Table 8.2) for the DC motors intended to drive the 
robot around. This test will ensure that the DC motors are able to rotate as they are 
designed to do. DC motors will be the main source that will allow for programming of the 
wireless manual navigation.  
 

Test Objective To test whether the DC Motors are able to rotate properly once 

connected.  

Equipment 1. 4 DC Motors 

2. ATMega328p 

3. Power Supply 

4. 2 Dual Channel Motor driver 

5. Desktop for programming 

Preparation 1. Connect the two of the four DC motors to one motor driver. 

2. Connect the driver to the pins of the ATMega328. 

3. Repeat Steps 1 and 2 for the other two motors. 

4. Connect the driver and PCB to the power supply. 

5. Connect USB from computer program to the PCB. 

6. Turn on the power supply. 

Procedure 1. Load the test program to the microcontroller. 

2. Execute the test program. 

Expected Result The testing program should allow the DC motors to rotate to the 

user’s desired position. 

Table 8.2: DC motor testing module 
  

8.1.3.2. Stepper Motors 
 
This section contains the testing module for the two stepper motors that will be utilized 
for aiming the Nerf-blasters. The module (Table 8.3) goes into detail of the objective, 
equipment needed how to prepare for the testing and the procedure. The final result is 
the expect result and if not performed correctly will go through trouble-shooting methods 
to resolve the project. 
  



 

104 
 

Test Objective Ensure that the two Stepper motors are connected properly and 

can rotate from a code command. 

Equipment 1.    2 Stepper Motors 

2.    2 Stepper Motor Drivers 

3.    PCB design 

4.    Computer 

5.    Power supply 

Preparation 1.    Connect each stepper motor to respective motor driver. 

2.    Connect the stepper motor drivers to the power supply. 

3.    connect the motor driver to the PCB design. 

4.    Connect the PCB design to computer with program. 

5.    Turn on the power supply. 

Procedure 1.    Load the program onto the microcontroller. 

2.    Execute the program. 

Expected Result The program should command the stepper motors to turn a few 

phases either left or right. The stepper motors should be able to 

follow the program and end. 

Table 8.3: Stepper motor testing module 
 

8.1.4. Microcontrollers 
 
This section contains a testing module (Table 8.4) for the microcontroller units that will be 
used to control the motors and the sensors for the project. The microcontroller, 
ATMega328p, will connect almost every component within the proposed system. Some 
of the component that will be connected to the ATMega328p include the power supply, 
the DC and stepper motors, the Raspberry Pi, the Lidar Lite 3 Rangefinder, and the nerf-
blasters. To ensure that the system design is functioning properly, there will be multiple, 
repetitive tests on the microcontroller.  
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Test Objective To ensure that the PCB designs are powered and each pin is 

functional. 

Equipment 1.   ATMega328p 

2.   Fuses 

3.   Diode 

4.   Capacitors 

5.   Resistors 

6.   LEDs 

7.   Clock Crystal 

8.   Push Button 

9.   5V power supply 

Preparation 1. Assemble the microcontrollers using all elements to complete 

the powering circuit. 

2. Boot load the ATMega328 with program. 

3. Connect power supply to the ATMega328p. 

4. Turn on power supply. 

Procedure 1. Run a program to enable a few pins at a time with an LED 

connected to each pin to be tested. 

Expected Result The LEDs should turn on for any pins enabled that would be used 

as an output. 

Table 8.4: Microcontroller testing module 
 

8.1.5. Nerf-Blaster Firing 
 
This testing module (seen in Table 8.5) goes through the preparation and procedure in 
order to fire the Nerf-blasters that will be controlled digitally. The nerf-blaster will be the 
main component that allow us to score in the competition. Since we will be programming 
the guns to fire using a MOSFET switch circuit, multiple tests will need to be performed 
to get the guns to fire without pulling the trigger. This will enable the Computer Science 
team to use this feature during their programming of the autonomous system. 
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Test Objective To ensure that the Nerf-blasters can be fired using a digitally 

controlled switch. 

Equipment 1. 2 Nerf-blasters 

2. ATMega328p 

3. MOSFET switch circuit 

4. Power Supply 

Preparation 1. Set up MOSFET Switch circuit to the ATMega328p. 

2. Connect the power supply to the two Nerf-blasters. 

3. Connect the output of the MOSFET switch circuit to the Nerf-

blasters. 

4. Turn on the power supply. 

5. Run program to enable the ATMega328p pins. 

Procedure 1. Run the program that will allow voltage to turn on the 

MOSFET 

2. Have program enable either Nerf-blaster 1 and 2 to fire 

Expected Result The Nerf-blaster should respond to the program execution to fire 

the darts and balls at a target. 

Table 8.5: Nerf-blaster firing testing module 
 

8.1.6. Rangefinder 
 
This is the testing module (see Table 8.6) for the LIDAR range finder with a full list of what 
needs to be accomplished for the LIDAR to do its function. The LIDAR range finder will 
need to be tested in order to prevent the system from firing outside of the course range. 
This will also need to be tested in order to prevent the range finder from firing within its 
own zone. The distance value given by the range finder will be able to label an individual 
as a “friend” or an “enemy”. Therefore, all of the functionality of the range finder listed 
above will be tested in order to make sure none of these errors occur. To begin these 
tests, it is important to test if the rangefinder is connected properly to the microcontroller. 
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Test Objective To test if the rangefinder is connected properly to the 

microcontrollers and can give a proper reading. 

Equipment 1. LIDAR Lite Range finder 

2. Microcontroller 

3. Wires 

4. Desktop Computer 

5. Power supply 

6. Measuring tape 

7. Object 

Preparation 1. Connect LIDAR to microcontroller 

2. Connect power supply to microcontroller and LIDAR 

3. Load program onto micro controller 

4. Turn on power supply 

5. Set and measure the distance of an object up to 40 ft. 

Procedure 1. Turn on all power components 

2. Load program onto microcontroller 

3. Aim LIDAR at pre-measured object 

4. Run the program 

Expected Result The LIDAR-Lite should turn on and record the distance of the 

object. If the object was 40ft away, the LIDAR should be able to 

detect and list the distance. 

Table 8.6: LIDAR integration testing module 
 

8.1.7. Power Distribution 
  
This is the testing module (see Table 8.7) for power distribution across the entire robot 
testing on a singular battery. Power should be distributed correctly throughout all 
components that connected to the proposed system. Power distribution is very important 
to test. During the competition, we do not want a particular component draining the bulk 
of the power supply. This would indeed cause our robot to lose power during the 
competition. Therefore, it is imperative to continue testing power distribution throughout 
the course of this project. 
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Test Objective To test all power distribution to all components using the battery 

so that every component is consuming the right amount of power. 

Equipment 1. Raspberry Pi 

2. Microcontrollers with voltage regulators 

3. 2 Sensors 

4. 4 DC motors 

5. 2 Stepper Motors 

6. 2 Nerf-blasters 

7. Battery 

8. Multi-meter 

Preparation 1. Connect each component to the battery 

2. Check all connections 

3. Run through each component for power calculation 

4. Fully charge battery 

Procedure 1. Turn on battery power 

Expected Result All components should be powered through one battery and work 

up to 40 minutes. 

Table 8.7: Power distribution testing module 
 

8.2. Software Testing 
 
This section highlights the necessary procedure in order to test the software developed 
for the proposed system. Each table clearly defines how the program will run, what 
hardware is required to execute the code, and the necessary steps required to allow for 
proper testing.  
 

8.2.1. Environment 
 
The environment in which all testing will be performed will consist of the following: This 
environment will be an indoor environment to simulate the same setting that will be 
present during the competition. This environment will also be an open space to prevent 
any outside factors from interfering with test results. The test environment will allow for 
multiple tests to be simulated so that every test can be executed properly. Finally, the test 
environment will have all outside materials necessary in order to complete each test. 
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8.2.2. Autonomous Detection 
 
These tests (seen in Table 8.8 and 8.9) will highlight the Electrical team’s plan to test the 
autonomous detection software that will be developed by the Computer Science team. 
This will help aid in the overall progression of the project. 
  

Test Objective To autonomously detect stationary and moving targets. 

Equipment 1. Logitech HD Pro Webcam 
2. Raspberry Pi 
3. ATMega328p 
4. Power Supply 
5. Desktop for programming 

Preparation 1. Connect the Logitech HD Pro Webcam to the Raspberry Pi 
2. Connect the Raspberry Pi the ATMega328 
3. Connect the power supply to the ATMega328 
4. Connect USB from computer program to the Raspberry Pi 
5. Turn on the power supply 

Procedure 1. Load the program to the Raspberry Pi that will be used to 
interface with the camera to detect objects 

2. Present an object that the robot has been trained to detect. 
3. Execute the test program 

Expected Result As the program is executed, the detected objects should be 
highlighted through the video feed streaming from the Logitech HD 
Pro Webcam. The detected objects should be indicated in some 
way as a friend or an enemy. 

Table 8.8: Autonomous Object Detection Test 
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Test Objective To autonomously detect human faces. 

Equipment 1. Logitech HD Pro Webcam 
2. Raspberry Pi 
3. ATMega328p 
4. Power Supply 
5. Desktop for programming 

Preparation 1. Connect the Logitech HD Pro Webcam to the Raspberry Pi 
2. Connect the Raspberry Pi the ATMega328 
3. Connect the power supply to the ATMega328 
4. Connect USB from computer program to the Raspberry Pi 
5. Turn on the power supply 

Procedure 1. Load the program to the Raspberry Pi that will be used to 
interface with the camera to detect human faces 

2. Present human face to camera 
3. Execute the test program 

Expected Result As the program is executed, the detected objects should be 
highlighted through the video feed streaming from the Logitech HD 
Pro Webcam. The detected objects should be indicated in some 
way as a friend or an enemy. 

Table 8.9: Autonomous Facial Detection Test 
 

8.2.3. Camera Sensor 
 
This test will be done to see if information can be gathered from the camera. Details can 
be seen in Table 8.10 below. 
 

Test Objective To receive and store input from the Logitech HD Pro webcam 

Equipment 1. Logitech HD Pro webcam 
2. Raspberry Pi 
3. Raspberry Pi Power Supply 

Preparation 1. Connect the Logitech HD Pro Webcam to the Raspberry Pi 
2. Connect the Raspberry to a power source 
3. Turn on Raspberry Pi 

Procedure 1. Open a terminal 
2. Execute “fswebcam image.jpg” command to take an image 

and save a jpeg 

Expected Result A photo will be taken and stored on file.  

Table 8.10: Camera Output Storage Test 



 

111 
 

8.2.4. Rangefinder Sensor 
 
This section illustrates the software development test plan that will be executed in order 
to check that information is being received from the Lidar Lite 3 Rangefinder accordingly 
(see Table 8.11).  
 

Test Objective To pull input from the LIDAR-Lite 3 Rangefinder into the software 

algorithm. 

Equipment 1. ATMega328p connected to PCB 

2. Power Supply 

3. Desktop  

4. Lidar Lite 3 Rangefinder 

Preparation 1. Connect the LIDAR-Lite 3 Rangefinder to the PCB. 

2. Connect the PCB to the Power Supply. 

3. Connect USB from the desktop to the PCB. 

4. Turn on the power supply. 

Procedure 1. Open a terminal. 

2. Execute command that will receive information from the 

LIDAR-Lite 3 rangefinder. 

3. Store this data into a usable variable. 

4. Read from variable. 

Expected Result As the command is executed, the rangefinder shall give 

information regarding the distance of a given object. This data 

should be stored into an easy to use format for use in algorithms 

developed by the Computer Science team. 

Table 8.11: Rangefinder Sensor Test 
 

8.2.5. Manual Navigation 
 
This test (see Table 8.12) highlights the steps required to test whether the programming 
done for the manual navigation has been implemented correctly. If there are any faults in 
this testing, a troubleshooting procedure will be taken to ensure all components are 
connected. 
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Test Objective All four motors are connected and can implement a tank drive. 

Equipment 1. 4 DC Motors 

2. ATMega328p 

3. Power Supply 

4. 2 Dual Channel Motor driver 

5. Desktop for programming 

Preparation 1. Connect the two of the four DC motors to one motor driver 

2. Connect the driver to the pins of the ATMega328 

3. Repeat Steps 1 and 2 for other two motors 

4. Connect the driver and PCB to the power supply 

5. Connect USB from computer program to the PCB 

6. Turn on the power supply 

Procedure 1. Using the WASD keyboard configuration from computer: 

a. Press the W key for forward rotation 

b. Press the S key for reverse rotation 

c. Press the A key for left rotation 

d. Press the D key for right rotation 

Expected Result As the W key is pressed, all the motors should be rotating in the 

forward direction. As the S key is pressed, the DC motors should 

turn in reverse. As the A key is pressed, the right pair of DC 

motors should rotate slower than the left pair of DC motors and 

vice versa for when the D key is pressed. 

Table 8.12: Manual Navigation Testing Module 
 

8.2.6. Nerf-Blaster Pan/Tilt Position 
 
This test illustrates what is required to test the user’s ability to control the Nerf-blaster’s 
position. This test will be crucial in allowing the Computer Science team to develop their 
algorithm. See Table 8.13 for more details. 
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Test Objective To be able to move the Nerf-blaster to the user’s desired position 

by programming the stepper motors to pan and tilt the turn axis. 

Equipment 1. 2 Stepper Motors 

2. 2 Stepper Motor Drivers 

3. ATMega328p connected to PCB 

4. Power Supply 

5. 2 Turn axis  

6. 2 Nerf-blasters 

7. Desktop for programming 

Preparation 1. Connect each stepper motor to a stepper motor driver 

2. Connect the driver to the pins of the ATMega328 

3. Connect the driver and PCB to the power supply 

4. Connect USB from computer program to the PCB 

5. Turn on the power supply 

6. Setup connection between each stepper motor and each turn 

axis 

7. Place Nerf-blasters inside each turn axis 

Procedure 1. Using the arrow keys on the user’s laptop, push the up arrow 

key to test if the guns will tilt in an upward position 

2. Push the down arrow key to tilt the guns in a downward 

position 

3. Push the right arrow key to pan guns to the right 

4. Push the left arrow key to pan guns to the left 

Expected Result As the up arrow key is pressed, the guns should tilt upward. As 

the down arrow key is pressed, the guns should tilt downward. As 

the left arrow key is pressed, the guns should pan to the left. As 

the right arrow key is pressed, the guns should pan to the right. 

Table 8.13: Nerf-blaster Pan and Tilt test 
 

8.2.7. ATmega328p Configuration 
 
The test case purposes for the ATmega328p are to ensure that there is direct 
communication with the Raspberry Pi 3 Model B and the Encoders that are attached to 
the Gear Motors. These test cases can be seen in detail in Table 8.14 and in Table 8.15 
below. While there are several other components connected to the ATmega328p, test 
cases for those components and their subsystems have been or will be discussed in other 
sections of the testing chapter.  



 

114 
 

  

Test Objective To check if the ATmega328p chip is receiving navigation input 

from the Raspberry Pi 3 Model B. 

Equipment 1. ATMega328p connected to PCB 

2. Raspberry Pi 3 Model B 

3. Power Supply 

4. Desktop for programming 

Preparation 1. Make sure ATMega328p is connected to Raspberry Pi 3 

Model B and that both devices are correctly connected to the 

power supply 

2. Turn on the power supply 

3. Establish a computer network connection to the Raspberry Pi 

either by LAN or Wi-Fi 

Procedure 1. Send mock navigational control signals to Raspberry Pi using 

the arrow keys on the computer 

2. Read data transmission logs from ATmega328p 

Expected Result The data logs from the ATmega328p should read that there were 

navigational signals (left, right, up, and down) transmitted to it. 

Table 8.14: Input from Raspberry Pi 3 Model B Test 
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Test Objective To check if the ATmega328p chip is receiving displacement input 

from the Encoders attached to the Gear Motors. 

Equipment 1. ATMega328p connected to PCB 

2. DC Motor Controllers 

3. Gear Motors with attached Encoders 

4. Raspberry Pi 3 Model B 

5. Power Supply 

6. Desktop for programming 

Preparation 1. Make sure ATMega328p is connected to Raspberry Pi 3 

Model B 

2. Connect Motor Controllers to ATMega328p 

3. Connect Gear Motors to Motor Controllers 

4. Connect Encoders to ATMega328p 

5. Establish that all components are connected to a power  

6. Turn on the power supply 

7. Establish a computer network connection to the Raspberry Pi 

either by LAN or Wi-Fi 

Procedure 1. Send navigational control signals to Raspberry Pi using the 

arrow keys on the computer 

2. Check to see that the wheels are turning 

3. If the wheels are turning, read data transmission logs from 

ATmega328p to see if displacement data is coming in 

4. If the wheels are not turning, recheck the component 

connections and repeat Step 3 

Expected Result The data logs from the ATmega328p should read that there were 

displacement values from the Encoders being sent to it. 

Table 8.15: Input from Encoders Test 
 

8.2.8. Raspberry Pi Communication 
 
This test (see Table 8.16) is about making sure the Raspberry Pi can read a message 
sent by the ATMega328p. Setting up communication between the ATMega328p and the 
Raspberry Pi will ensure that all necessary data can be transferred to the Pi in order to 
wirelessly transfer the data to the laptop. 
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Test Objective To check if the ATMega328p is able to transmit data to the 
Raspberry Pi 3 Model B 

Equipment ATMega328p connected to PCB 

Raspberry Pi 3 Model B 

Power Supply 

Preparation 1. Connect the Raspberry Pi to the ATMega328p on the PCB via 
USB 

2. Make sure the Raspberry Pi and PCB are powered and on. 
3. Install Arduino IDE on the Raspberry PI 
4. Install serialPy package on the Raspberry Pi. 

Procedure 1. Run Arduino IDE on the Raspberry Pi 
2. Use a test Processing language script with functions from the 

Arduino Serial Library such as “Serial, begin, println” begin 
serial transmission for the ATMega328p  

3. Use a test script Python script with functions imported from 
serialPy such as “readLine” to receive data from ATMega328p. 

Expected 
Results 

The string sent by the ATMega should display in the Python 
program running.  

Table 8.16: Raspberry Pi Receive Input from Microcontroller  
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9. Administrative 
 
Project management, in general, will come down to time management and budgeting. 
The following sections provides details on milestones accomplished and waiting to be 
accomplished throughout the project, from concept to completion. This section also 
contains details on how the battlebot stayed within the bounds of the project budget. 
 

9.1. Project Milestones 
 
A summary of milestones completed in Fall of 2016 is listed below in Table 9.1. 
  

Fall 2016 - Senior Design I 

Milestone Start End 

Researched Project Ideas 8/22/16 9/9/16 

Initial Project Idea Documentation 9/1/16 9/9/16 

First Half Hour Meeting 9/19/16 9/19/16 

First Sponsor Meeting 9/21/16 9/21/16 

Met Mechanical and Computer Science Teams 9/21/16 9/21/16 

First Sponsor Conference Call 9/30/16 9/30/16 

First All Teams Meeting 9/30/16 9/30/16 

Table of Contents 9/9/16 11/4/16 

Draft Document 9/9/16 11/11/16 

Last Half Hour Meeting 11/14/16 11/16/16 

Last Sponsor Conference Call 11/21/16 11/21/16 

Finalized Components List For Ordering 9/30/16 11/28/16 

Ordered Components 10/28/16 11/28/16 

Last All Teams Meeting 12/2/16 12/2/16 

Final Document 9/9/16 12/6/16 

Lockheed Martin PDR Presentation 11/2/16 12/13/16 

 Table 9.1: Fall 2016 milestones 
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A list of desired milestones to achieve in the Spring semester of 2017 is seen below in 
Table 9.2. 
 

Spring 2017 - Senior Design II 

Milestone Start End 

Test Components 12/15/16 1/15/17 

Build Prototype 1/16/17 2/26/17 

Test Prototype TBD TBD 

Make Necessary Adjustments TBD TBD 

Finalize Project TBD TBD 

Final Presentation TBD TBD 

Final Report TBD TBD 

Battlebots Competition TBD TBD 

Table 9.2: Spring 2017 milestones 
 

9.2. Project Budget 
 
This project was sponsored by the company Lockheed Martin. They allowed a maximum 
budget of $2,000, with the limitation that the final product be at a maximum as-
demonstrated cost of $1,000. The budgeting for this project can be seen in two separate 
tables. Table 9.3 consists of primary main components of the system and Table 9.4 
contains items that are additions to the main components (e.g. a microSD card for the 
Raspberry Pi to run its operating system and respective processes on). 
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Component Name Quantity Cost Per Unit Total 

Image Sensor Logitech HD Pro Webcam 
C920 

1 $52.49 $52.49 

Rangefinder LIDAR-Lite 3 Laser Range 
Finder 

1 $112.49 $112.49 

Processing 
Unit 

Raspberry Pi 3 Model B 1 $35.99 $35.99 

Microcontroller ATmega328p 2 $13.48 $26.96 

Motorshield 10A Dual Channel Bi-
directional DC Motor Driver 

2 $23.49 $46.98 

Encoder *Attached to NeveRest 40 
Gearmotor 

4 $28.00 $112.00 

Servo Motor Futaba S3004 Standard 
Servo Motor 

2 $12.49 $24.98 

Stepper Motor 3V 1.7A 68oz-in Stepper 
Motor 

1 $16.95 $16.95 

Voltage 
Regulator 

5V 1.5A Switching Voltage 
Regulator 

1 $5.45 $5.45 

Nerf-blaster 
(Dart) 

CS-18 N-Strike Rapidstrike 1 $39.99 $39.99 

Nerf-blaster 
(Ball) 

Nerf Rival Zeus MXV-1200 1 $40.00 $40.00 

Total $514.28 

 Table 9.3: Project budget for main components 
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Component Name Quantity Cost Per Unit Total 

Miscellaneous 16 MHz Crystal 3 $0.86 $2.58 

Miscellaneous EasyDriver - Stepper Motor 
Driver 

2 $13.46 $26.92 

Miscellaneous SparkFun USB to Serial 
Breakout - FT232RL 

1 $13.46 $13.46 

Miscellaneous  USB 2.0 Cable A-Male to B-
Male 

1 $4.99 $4.99 

Miscellaneous 9V 1A Power Adapter for 
Arduino 

1 $5.59 $5.59 

Miscellaneous 32GB microSDHC USH-I 
card 

1 $9.95 $9.95 

Miscellaneous Elegoo Upgraded 
Electronics Kit 

1 $16.86 $16.86 

Total $80.35 

 Table 9.3: Project budget for complements of main components 
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10. Conclusion 
 
The design of the proposed system will highlight and demonstrate the technical skills that 
each team has acquired throughout the course of the engineering program. Every aspect 
of the current system’s design has been analyzed thoroughly with the hopes of developing 
a successful project. With thorough planning regarding research, hardware design, 
software design, and testing, the team has ultimately prepared for the build phase of the 
project’s implementation. 
 
As the semester has progressed, the team has developed a detailed list of components 
that will be used in this senior design project build. The team has also created a timeline 
of when tasks must be completed to keep all team members on schedule. The team has 
kept up with finances, constantly updating spreadsheets with new values of parts that will 
be ordered. Although all of this tedious planning has been executed to the utmost degree, 
the team must expect changes and must be willing to adapt as the project moves into the 
development phase. 
 
Working cross-discipline with other majors has allowed the Electrical and Computer 
Engineering team to gain experience that is closer to the real world. Dealing with various 
team members from different disciplines can be fairly common in the engineering work 
environment. This opportunity of learning and engaging with other individuals has been 
truly enlightening for the Electrical and Computer Engineering team, as many new ideas 
have continued to develop throughout the project’s planning phase. 
 
The key purpose of the Nerf-Enabled Battlebot is to be able to autonomously detect, aim, 
and fire at an enemy target. This opportunity to build the proposed system has allowed 
the Red team to be exposed to new concepts regarding computer vision and autonomous 
robot systems. Given the opportunity to learn and develop regarding electrical 
components and how they affect the autonomy of the system, the Computer and Electrical 
team have truly grown, and will continue to grow in the following semester. 
 
The Electrical and Computer Science team has set certain goals for the next semester. 
As a whole with the other majors, the team hopes to win the battlebot competition against 
the other teams that will be competing. The team also hopes to have a fair and friendly 
competition with competitors. The team will be trying to get the implementation of the 
proposed system completed as early as possible in order to allow for multiple changes. 
The final goal of this team is to work together and pull through the final course of the 
engineering degree.  
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Appendices 
 

Appendix A - Copyright Permissions 
 
Adafruit 
support@adafruit.com 
 
Figure(s): 3.20 
Status: Requested 
 

 
 
AndyMark 
customerservice@andymark.com 
 
Figure(s): 3.29 
Status: Requested 
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Arduino 
Editorial contents of the arduino.cc website, such as texts and photos, are released as 
Creative Commons Attribution ShareAlike 3.0. This means you can use them on your own 
derived works, in part or completely, as long as you also adopt the same license.  
 
Figure(s): 5.2 
Status: Granted 
 
Chris Clark, instructor at Princeton  
cmclark@cs.princeton.edu 
 
Figure(s): 3.22 and 3.23 
Status: Requested 
 
Dimension Engineering 
support@dimensionengineering.com 

Figure(s): 3.11 and 3.32 
Status: Granted 
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Electronics Tutorials 
http://www.electronics-tutorials.ws/contact 
 
Figure(s): 5.8 
Status: Requested 
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Hasbro 
permissions@hasbro.com 
 
Figure(s): 3.18 and 3.19 
Status: Requested 
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Logitech 
All text, graphics, user or visual interfaces, trademarks, logos, music, sounds, artwork, 
photographs, and computer code (“Content”), including but not limited to the design, 
structure, selection, coordination, expression, “look and feel,” and the arrangement of 
such Content, contained on this Website is owned, controlled, or licensed by Logitech. All 
such Content is protected by trade dress, copyright, patent and trademark laws, and 
various other intellectual property rights and unfair competition laws. Unless another 
agreement applies to particular Content (e.g., Software License Agreement, Terms of 
Service, etc.), Logitech hereby grants you limited permission to use the Content subject 
to these Terms, as long as the use of such Content is solely for your personal, non-
commercial informational use. 
 
Figure(s): 3.24 
Status: Granted 
 
oomlout 
info@oomlout.com 
These are the product photos we use on our web store www.oomlout.co.uk , please feel 
free to use them for whatever purpose you see fit, but please send us a message. 
 
Figure(s): 3.27 
Status: Requested 
 

 
 
O’Reily 
permissions@oreilly.com 
For permission to use text, code, or images from our books, please send us a brief email 
describing the specific information you'd like to reproduce and the final destination for or 
purpose of the reproduction. 
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Figure(s): 3.8 
Status: Requested 

 

Photonix 
Contact Michael @ michaellarabel.com 
All information provided by Phoronix Media on any of its web properties is provided for 
use "as is" and is without warranty of any kind. In no event shall Phoronix Media be liable 
to any party for any direct or indirect damages for any use of their web-sites -- including, 
without limitation, any lost profits, business interruption, loss of programs, loss of 
programmed data, or otherwise. All information displayed on Phoronix Media web-sites 
are the property of Phoronix Media and is protected by copyright. Articles may not be 
copied or distributed without the prior written consent of Phoronix Media. Some web 
properties offer areas that contain readers' comments and opinions, which Phoronix does 
not have any responsibility or any liability over any readers' comments and opinions. By 
accessing any web property owned by Phoronix Media, you agree to these terms. 

Figure(s): 3.3, 3.4, 3.5, and 3.6 
Status: Granted 
 
RobotShop 
supportcenter@robotshop.com 
 
Figure(s): 3.25, 3.26, 3.28, 3.30, and 3.31 
Status: Granted 
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Appendix B - Datasheets 
 
http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-
328P_datasheet.pdf 
 
https://www.element14.com/community/servlet/JiveServlet/previewBody/65470-102-1-
287848/Raspberry-Pi%20Technical%20Data%20Sheet.pdf 
 
 

Appendix C - Works Cited 
 
[1] Unknown, (2016), Brush DC Motor Guide, retrieved from 
http://www.anaheimautomation.com/manuals/forms/brush-dc-motor-guide.php  
 
[2] Unknown, (2015, April 15), How does the Lead Acid Batteries Work?, retrieved from 
http://batteryuniversity.com/learn/article/lead_based_batteries 
 
[3] Woodbank Communications Ltd, (2005), Lead Acid Batteries, retrieved from 
http://www.mpoweruk.com/leadacid.htm  
 

http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_datasheet.pdf
http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_datasheet.pdf
https://www.element14.com/community/servlet/JiveServlet/previewBody/65470-102-1-287848/Raspberry-Pi%20Technical%20Data%20Sheet.pdf
https://www.element14.com/community/servlet/JiveServlet/previewBody/65470-102-1-287848/Raspberry-Pi%20Technical%20Data%20Sheet.pdf
http://www.anaheimautomation.com/manuals/forms/brush-dc-motor-guide.php
http://batteryuniversity.com/learn/article/lead_based_batteries
http://www.mpoweruk.com/leadacid.htm


 

129 
 

[4] Unknown, (2013, February 16), How to Pick The Right Battery For Your Project, 
retrieved from 
https://learn.adafruit.com/all-about-batteries/how-to-pick-the-right-battery-for-your-
project 
 
[5] PowerTech Systems, (2015), Lithium-Ion vs Lead-Acid, retrieved from 
http://www.powertechsystems.eu/home/tech-corner/lithium-ion-vs-lead-acid-battery/  
 
[6] Bonheur, Kristoffer, (2016, March 13), Lithium ion battery: Advantages and 
disadvantages, retrieved from 
http://www.versiondaily.com/lithium-ion-battery-advantages-disadvantages/ 
 
[7] Unknown, (2016, May 30), Nickel-Based Batteries, retrieved from 
http://batteryuniversity.com/learn/article/nickel_based_batteries 
 
[8] Texas Instruments, (2011), Linear and Switching Voltage Regulator Fundamentals, 
retrieved from 
http://www.ti.com/lit/an/snva558/snva558.pdf 
 
[9] Holloway, James, (2016), How Does a NERF Gun Work?, retrieved from 
http://www.ehow.com/how-does_4699643_nerf-gun-work.html 
 
[10] Roger’s Hobby Center, (2016), A Guide to Understanding LiPO Batteries, retrieved 
from 
http://rogershobbycenter.com/lipoguide/ 
 
[11] Future Electronics, (2016), What Is a Switching Regulator, retrieved from 
http://www.futureelectronics.com/en/regulators-references/switching-regulators.aspx 
 
[12] Morani, Giovanna. "Understanding Resolution In Optical And Magnetic Encoders." 
Components Content from Electronic Design., 23 June 2013. Web. 2016. 
http://electronicdesign.com/components/understanding-resolution-optical-and-magnetic-
encoders 
 
[13] Unknown, "Accuracy and Ultrasonic Distance Meters." Laser Distance Measurer., 29 
June 2015. Web. 2016. retrieved from 
http://www.laser-distance-measurer.com/accuracy-and-ultrasonic-distance-meter/ 
 
[14] Krig, Scott. "Computer Vision Metrics." Google Books. Web. 2016. retrieved from 
https://goo.gl/100P9C 
 
[15] Unknown, Lidar-uk.com. Bluesky International Limited,  Web. 2016. retrieved from 
http://www.lidar-uk.com/index.php 
 
[16] Calponi, Elso “Self-Targeting Autonomous Turret System” University of Central 
Florida, Web. 2016. retrieved from 

https://learn.adafruit.com/all-about-batteries/how-to-pick-the-right-battery-for-your-project
https://learn.adafruit.com/all-about-batteries/how-to-pick-the-right-battery-for-your-project
http://www.powertechsystems.eu/home/tech-corner/lithium-ion-vs-lead-acid-battery/
http://www.versiondaily.com/lithium-ion-battery-advantages-disadvantages/
http://batteryuniversity.com/learn/article/nickel_based_batteries
http://www.ti.com/lit/an/snva558/snva558.pdf
http://www.ehow.com/how-does_4699643_nerf-gun-work.html
http://rogershobbycenter.com/lipoguide/
http://www.futureelectronics.com/en/regulators-references/switching-regulators.aspx
http://electronicdesign.com/components/understanding-resolution-optical-and-magnetic-encoders
http://electronicdesign.com/components/understanding-resolution-optical-and-magnetic-encoders
http://www.laser-distance-measurer.com/accuracy-and-ultrasonic-distance-meter/
https://goo.gl/100P9C
http://www.lidar-uk.com/index.php


 

130 
 

http://www.eecs.ucf.edu/seniordesign/sp2014su2014/g08/documents/SD2%20Docume
nt%20Group%208.pdf 
 
[17] Dodge, Brian “The Autonomous Sentry Robot” University of Central Florida, Web. 
2016. retrieved from 
http://www.eecs.ucf.edu/seniordesign/sp2015su2015/g09/Archive/ASRSD1FinalReport.
pdf 
  
[18] Diaz, Bryan “Autonomous Chasing Robot” University of Central Florida, Web. 2016. 
retrieved from 
http://www.eecs.ucf.edu/seniordesign/fa2014sp2015/g19/files/SD1_paper.pdf 
  
[19] Durrant-Whyte, Hugh. Simultaneous Localisation and Mapping (SLAM): Part I The 
Essential Algorithms. Web. 2016. retrieved from 
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/Durrant-
Whyte_Bailey_SLAM-tutorial-I.pdf 
  
[20] Blas, Morten Rufus. "SLAM for Dummies." Web. 2016. retrieved from 
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-
spring-2005/projects/1aslam_blas_repo.pdf 
 
[21] Eitel, Elizabeth. "Basics of Rotary Encoders: Overview and New Technologies." 
Sensors Content from Machine Design., 7 May 2014. Web. 2016. retrieved from 
http://machinedesign.com/sensors/basics-rotary-encoders-overview-and-new-
technologies-0 
 
[22] Unknown, "New to Encoders." New to Encoders Encoder Products. Web. 2016, 
retrieved from 
http://encoder.com/new-to-encoders/ 
  
[23] Davide Migliore, (2009) Use a Single Camera for Simultaneous Localization And 
Mapping with Mobile Object Tracking in dynamic environments 
http://www.rawseeds.org/home/wp-
content/uploads/2009/10/Migliore_et_al_Workshop_ICRA_20091.pdf 
  
[24] Chieh-Chih Wang, (2007), Simultaneous Localization, Mapping and Moving Object 
Tracking 
https://www.ri.cmu.edu/pub_files/pub4/wang_chieh_chih_2007_1/wang_chieh_chih_20
07_1.pdf 
 
[25] Intro to Robotics, (2013), Fundamental Guide for Stereo Vision in Robotics 
https://www.intorobotics.com/fundamental-guide-for-stereo-vision-cameras-in-robotics-
tutorials-and-resources/ 
  
[26] Stefano Mattoccia, (2015),  Stereo Vision: Algorithms and Applications 
http://vision.deis.unibo.it/~smatt/Seminars/StereoVision.pdf 

http://www.eecs.ucf.edu/seniordesign/sp2014su2014/g08/documents/SD2%20Document%20Group%208.pdf
http://www.eecs.ucf.edu/seniordesign/sp2014su2014/g08/documents/SD2%20Document%20Group%208.pdf
http://www.eecs.ucf.edu/seniordesign/sp2015su2015/g09/Archive/ASRSD1FinalReport.pdf
http://www.eecs.ucf.edu/seniordesign/sp2015su2015/g09/Archive/ASRSD1FinalReport.pdf
http://www.eecs.ucf.edu/seniordesign/fa2014sp2015/g19/files/SD1_paper.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf
http://machinedesign.com/sensors/basics-rotary-encoders-overview-and-new-technologies-0
http://machinedesign.com/sensors/basics-rotary-encoders-overview-and-new-technologies-0
http://encoder.com/new-to-encoders/
http://encoder.com/new-to-encoders/
http://www.rawseeds.org/home/wp-content/uploads/2009/10/Migliore_et_al_Workshop_ICRA_20091.pdf
http://www.rawseeds.org/home/wp-content/uploads/2009/10/Migliore_et_al_Workshop_ICRA_20091.pdf
https://www.ri.cmu.edu/pub_files/pub4/wang_chieh_chih_2007_1/wang_chieh_chih_2007_1.pdf
https://www.ri.cmu.edu/pub_files/pub4/wang_chieh_chih_2007_1/wang_chieh_chih_2007_1.pdf
https://www.intorobotics.com/fundamental-guide-for-stereo-vision-cameras-in-robotics-tutorials-and-resources/
https://www.intorobotics.com/fundamental-guide-for-stereo-vision-cameras-in-robotics-tutorials-and-resources/
http://vision.deis.unibo.it/~smatt/Seminars/StereoVision.pdf


 

131 
 

 
[27] RobotShop, Blackbird FPV Camera 
http://www.robotshop.com/en/blackbird-2-3d-fpv-camera.html      
 
[28] RobotShop, Stereoscopic Nerdcam 3D FPV 
http://www.robotshop.com/en/nerdcam3d-mk2-stereoscopic-fpv-3d-flight-camera.html 
http://www.eecs.ucf.edu/seniordesign/sp2015su2015/g09/archive.html 
 
[29] Guarav Sukhatme, (2010), Real-time Motion Tracking from a Mobile Robot 
http://robotics.usc.edu/publications/media/uploads/pubs/650.pdf 
 
[30] ElectronicsTutorials, MOSFET as a switch 
http://www.electronics-tutorials.ws/transistor/tran_7.html 
 
[31] RobotShop, (2011), Controlling Your Robot 
http://www.robotshop.com/blog/en/how-to-make-a-robot-lesson-6-controlling-your-robot-
2-3688 
 
[32] CircuitDigest, WiFi Controlled Robot 
http://circuitdigest.com/microcontroller-projects/arduino-wifi-controlled-robot 
 
[33] Sending data from Arduino to Raspberry Pi 
https://www.raspberrypi.org/forums/viewtopic.php?t=111882&p=767549 
 
[34] All about agile, (2011) 
http://www.allaboutagile.com/agile-development-cycle/ 
 
[35] digi, Zigbee Wireless Standard 
https://www.digi.com/resources/standards-and-technologies/rfmodems/zigbee-wireless-
standard 
 
[36] Our every day life, Blue-Tooth vs Wifi Power Consumption 
http://techin.oureverydaylife.com/bluetooth-vs-wifi-power-consumption-17630.html 
 

Appendix D - Figures and Tables 
 
Appendix D contains a list of all the figures and tables used in this document. 
 

Table of Figures 
 
All figures referenced in the document and their descriptions and request status for 
permission of use are seen listed below in Tables A-E. 
 
 

http://www.robotshop.com/en/blackbird-2-3d-fpv-camera.html
http://www.robotshop.com/en/nerdcam3d-mk2-stereoscopic-fpv-3d-flight-camera.html
http://www.robotshop.com/en/nerdcam3d-mk2-stereoscopic-fpv-3d-flight-camera.html
http://www.eecs.ucf.edu/seniordesign/sp2015su2015/g09/archive.html
http://robotics.usc.edu/publications/media/uploads/pubs/650.pdf
http://www.electronics-tutorials.ws/transistor/tran_7.html
http://www.robotshop.com/blog/en/how-to-make-a-robot-lesson-6-controlling-your-robot-2-3688
http://www.robotshop.com/blog/en/how-to-make-a-robot-lesson-6-controlling-your-robot-2-3688
http://circuitdigest.com/microcontroller-projects/arduino-wifi-controlled-robot
https://www.raspberrypi.org/forums/viewtopic.php?t=111882&p=767549
http://www.allaboutagile.com/agile-development-cycle/
https://www.digi.com/resources/standards-and-technologies/rfmodems/zigbee-wireless-standard
https://www.digi.com/resources/standards-and-technologies/rfmodems/zigbee-wireless-standard
http://techin.oureverydaylife.com/bluetooth-vs-wifi-power-consumption-17630.html
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2. Project Description 

No. Description Source Permission Status 

2.1 Example of the playing field Project Supplied - 

Table A 
 

3. Research 

No. Description Source Permission Status 

3.1 Outline of the SLAM Process SLAM for 
Dummies 

Request Pending 

3.2 Intricate SLAM Map showing spikes 
and edges 

SLAM for 
Dummies 

Request Pending 

3.3 C.RAY Benchmark Photonix Granted 

3.4 John The Ripper Benchmark Photonix Granted 

3.5 Smallpt Benchmark Photonix Granted 

3.6 Performance Per Dollar Benchmark Photonix Granted 

3.7 An example of a 128x128 pixel 
image 

Team Designed - 

3.8 Benchmark of different vision 
libraries 

O’Reily Requested 

3.9  Original low contrast image OpenCV Requested 

3.10 Shows Histogram Equalized Output OpenCV Requested 

3.11 DE-SW050 Switching Voltage 
Regulator 

Dimension 
Engineering 

Granted 

3.12 Front view of chassis Team Designed - 

3.13 Bottom view of chassis Team Designed - 

3.14 Side view of chassis Team Designed - 

3.15 Completely assembled robot Team Designed - 

Table B 
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3. Research 

No. Description Source Permission Status 

3.16 BJT Example Sparkfun Requested 

3.17 MOSFET Diagram Elprocus Requested 

3.18 Nerf Rival Zeus MXV-1200 Hasbro Requested 

3.19 CS-18 N-Strike Rapidstrike Hasbro Requested 

3.20 Motor Controller example Adafruit Requested 

3.21 Odometry p1- Example showing the 
relations of variables 

Princeton Requested 

3.22 Odometry p2- Example relating 
circular α to the orientation 

Princeton Requested 

3.23 Odometry p3- Example denoting 
difference of Δd  and Δs 

Princeton Requested 

3.24 Logitech HD Pro Webcam C920 Logitech  Granted 

3.25 LIDAR-Lite 3 Laser Range Finder RobotShop Granted 

3.26 Raspberry Pi 3 Model B RobotShop Granted 

3.27 ATmega328p oomlout Requested 

3.28 10 A 5-25V Dual Channel DC Motor 
Driver 

RobotShop Granted 

3.29 NeveRest 40 Gearmotor with 
attached encoder 

AndyMark Requested 

3.30 Futaba S3004 Standard Servo Motor RobotShop Granted 

3.31 3V 1.7A 68oz-in Stepper Motor RobotShop Granted 

3.32 5V 1A Switching Voltage Regulator Dimension 
Engineering 

Granted 

Table B-2: Continuation of Table B 
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5. Hardware Design 

No. Description Source Permission Status 

5.1 Power Flow diagram Team Designed - 

5.2 ATmega168/328 pin mapping Arduino Granted 

5.3 GPIO pinout for Raspberry Pi 3 Element14 Request Pending 

5.4 Forward and Reverse Drive Team Designed - 

5.5 Left and Right Drive Team Designed - 

5.6 Inside of a Nerf-blaster Team Supplied  

5.7 Mechanical switch of a Nerf-blaster Team Supplied - 

5.8 MOSFET as a switch Electronics 
Tutorials 

Requested 

Table C 
 

6. Software Design 

No. Description Source Permission Status 

6.1 High Level Software Diagram Team Designed - 

6.2 High Level Software Diagram in 
Neutral Mode 

Team Designed - 

6.3 Agile Development Life Cycle Team Designed - 

6.4 Data Flow Sensors Team Designed - 

6.5 Manual Navigation Breakdown Team Designed - 

6.6 Breakdown of Components for Nerf-
Blaster’s Pan and Tilt 

Team Designed - 

6.7 ATmega328p response to firing 
subsystem seen as a flowchart 

Team Designed - 

Table D 
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7. Prototype Construction 

No. Description Source Permission Status 

7.1 Microcontroller Schematic Team Designed - 

7.2 PCB Layout Team Designed - 

7.3 Ideal full schematic design of robot Team Designed - 

Table E 
 

Table of Tables 
 
All tables referenced in the document are seen listed below in Tables A-G. 
 

2. Project Description 

No. Description 

2.1 Size Requirements 

2.2 Object Detection Requirements 

2.3 Power Requirements 

2.4 Mobility Requirements 

2.5 Cost Requirements 

2.6 Engineering-Market Trade-Off Matrix 

Table A 
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3. Research 

No. Description 

3.1 Comparison of laser range finders  

3.2 Comparison of vision sensors 

3.3 Comparison between FliR Dev Kit and Seek Compact thermal sensors 

3.4 Comparison of microcontrollers 

3.5 Banana Pi Pro specifications 

3.6 ODROID-C2 specifications 

3.7 Raspberry Pi 3 Model B specifications 

3.8 NVIDIA Jetson TK1 specifications 

3.9 Comparison of CIM motors 

3.10 Comparison of Servo motors 

3.11 Comparison of Brushless DC Motors 

3.12 Comparison of Stereo Vision cameras within budget 

3.13 Comparison of Sealed lead acid batteries 

3.14 Comparison of LiFePO4 batteries 

3.15 Comparison of NiMH batteries 

3.16 Comparison among different LiPO products 

3.17 PID Control Functions 

3.18 Comparison of Data Transfer Wirelessly 

3.19 List of main computer/electrical components selected 

Table B 
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4. Related Standards and Design Constraints 

No. Description 

4.1 Table of related standards and their descriptions 

Table C 
 

5. Hardware Design 

No. Description 

5.1 Powering components 

5.2 Pin assignment of each component 

5.3 Pinout for LIDAR-Lite 

5.4 Pinout table for Encoders 

Table D 
 

6. Software Design 

No. Description 

6.1 Arduino Serial Library begin 

6.2 Arduino Serial Library end 

6.3 Arduino Serial Library find 

6.4 Arduino Serial Library findUtil 

6.5 Arduino Serial Library read 

6.6 Arduino Serial Library write 

6.7 Arduino PID Library - PID 

6.8 Arduino PID Library - Computer 

6.9 Arudino PID Library - SetOutputLimits 

6.10 Arduino PID Library - SetTunings 

Table E 
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8. Prototype Testing 

No. Description 

8.1 Camera Testing module 

8.2 DC motor testing module 

8.3 Stepper motor testing module 

8.4 Microcontroller testing module 

8.5 Nerf-blaster firing testing module 

8.6 LIDAR integration testing module 

8.7 Power distribution testing module 

8.8 Autonomous Object Detection Test 

8.9 Autonomous Facial Detection Test 

8.10 Camera Output Storage Test 

8.11 Rangefinder Sensor Test 

8.12 Manual Navigation Testing module 

8.13 Nerf-blaster Pan and Tilt Test 

8.14 Input from Raspberry Pi 3 Model B Test 

8.15 Input from Encoders Test 

8.16 Raspberry Pi Receive Input from Microcontroller 

Table F 
 

9. Administrative 

No. Description 

9.1 Fall milestones 

9.2 Spring milestones 

9.3 Project budget for main components 

9.4 Project budget for complements of main components 

Table G 


